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Abstract

Pricing and Matching in the Sharing Economy

Yun Zhou

Doctor of Philosophy

Graduate Department of Rotman School of Management

University of Toronto

2017

We study operational problems related to the sharing economy. Sharing economy platforms such as Uber

offer the crowdsourced suppliers a wage for providing services/goods, and charge the customers a price

for using them. In Chapter 2, we study the fixed commission rate contract practiced by many sharing

economy platforms. We show that by using the optimal flat-commission contract, the platform achieves

at least 75% of the optimal profit of the first-best benchmark, in which the platform freely chooses the

price and wage under various market conditions.

In Chapter 3, we consider a platform’s problem of dynamically matching random demand and supply

of heterogeneous types in a periodic-review fashion. The platform decides the optimal matching policy

to maximize the total discounted rewards minus costs. We provide sufficient and robustly necessary

conditions only on matching rewards such that the optimal matching policy follows a priority hierarchy

among possible matching pairs.

In Chapter 4, we study the dynamic matching problem in Chapter 3 under two specific forms of

reward structures. First, we consider the problem with horizontally differentiated supply and demand

types. In that problem, supply and demand types locate on a unidirectional circle. The unit matching

reward between a supply type j and a demand type i is a decreasing function with respect to the

unidirectional distance from the location of j to that of i on the circle. We then study the problem with

vertically differentiated supply and demand types, for which we impose a reward structure in which

types have quality differences. For both cases, we apply the results in Chapter 3 to characterize the

optimal matching policy.

In Chapter 5, we study the pricing behaviors of two agents under incentives generated from social

comparison. We demonstrate how opposite-directional social comparisons interact with demand vari-

ability to change competitive behaviors. In particular, we show that the stronger the behind aversion

behavior, the more intense the price competition, and that there is a threshold on the market variability

above which price competition is more alleviated and below which price competition is more intensified,

when the agents exhibit stronger ahead-seeking behavior.
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Chapter 1

Introduction

In the past decade, we have witnessed the rise of the sharing economy. With the help of technological

platforms, ordinary people are able to share their excess resources and receive monetary payment in

return. As one of the pioneers in the recent rise of the sharing economy, the venture-funded startup

Uber launched non-taxi ridesharing services that allow a prospective passenger to use a smartphone app

to book a space in a nearby car owned by someone else. Ubers service has now expanded to over 300 cities

in the world, recording its 2 billionth ride in 2016. Together with other startups such as Sidecar and Lyft,

the company is leading a disruption to the taxi industry. Like the ridesharing services, the car rental

company FlightCar sources from the crowd by offering travellers free parking at the airport and renting

out their cars in exchange. The logistics industry has also benefited from the idea of the sharing economy.

In addition to offering rides, Uber also has its drivers deliver small packages. Amazon’s “Amazon Flex”

program uses independent contractor drivers to deliver packages. Even the power industry is benefiting

from the thriving of the sharing economy. KiWi power, a grid company in the UK, operates a virtual

power plant which enables power capacity to be shared among users. It pays users for agreeing to switch

off their appliances (e.g., when a freezer is cold enough) and sell the spare capacity to the national

grid. Two other examples of the modern sharing economy are Airbnb, where people rent out lodging

spaces in their homes, and TaskRabbit, which enables its users to outsource small tasks to people in the

neighborhood.

Technological platforms such as Uber crowdsource supply from ordinary people, and their decision

making revolves around effectively matching crowdsourced supply with customer demand. In this thesis,

we study such a platform’s problems on coordinating crowdsourced supply with demand through pricing

and quantity matching decisions.

In Chapter 2, we consider a platform which crowdsources a service from independent suppliers and

sells it to customers. The platform offers a wage to the supply side and charges a price to the demand

side. We study the performance of the widely practiced, flat, across-the-board commission contracts,

1
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under which the platform takes a fixed cut and the wage is equal to a pre-determined fraction of the

price. As a first-best benchmark, the platform can freely choose the price and wage under various market

conditions. For a given realized market condition, we show that the joint price and wage optimization in

the first-best benchmark can be reduced to one-dimensional problem of solving for the optimal matching

quantity, and the optimal price has a U-shaped relationship with the wage. The latter implies that

our two-sided pricing problem is in stark contrast with the traditional supply chain settings and the

economics literature on the two-sided market. With the pre-committed commission, the platform has

its hands tied in varying prices to match supply with demand, under supply and demand uncertainty.

However, surprisingly, we show that a commission contract can be optimal or near-optimal for the

platform and suppliers. In particular, as long as all possible supply curves are concave in the wage

which seems consistent with 2015 US hourly wage data, by using the optimal flat-commission contract,

the platform achieves at least 75% of the optimal profit of the first-best benchmark. We then make

several extensions to other alternative platform objectives such as welfare maximization, to piecewise

commission contracts, and to suppliers who set their own wages.

In Chapter 3, we consider an intermediary platform’s problem of dynamically matching demand and

supply of heterogeneous types in a periodic-review fashion. More specifically, there are two disjoint sets

of demand and supply types. There is a reward associated with each possible matching of a demand

type and a supply type. In each period, demand and supply of various types arrive in random quantities.

The platform’s problem is to decide on the optimal matching policy to maximize the total discounted

rewards minus costs, given that unmatched demand and supply will incur waiting or holding costs, and

will be carried over to the next period with abandonments. This problem applies to many emerging

settings in the sharing economy and also includes many classic problems, e.g., assignment/transportation

problems, as special cases. For this dynamic matching problem, we provide sufficient and robustly

necessary conditions (which we call modified Monge conditions) only on matching rewards such that

the optimal matching policy follows a priority hierarchy among possible matching pairs: if some pair of

demand and supply types is not matched as much as possible, all pairs that have strictly lower priority

down the hierarchy should not be matched. The modified Monge condition generalizes the Monge

sequence condition, discovered by Gaspard Monge in 1781, which guarantees that a static and balanced

transportation problem is solvable by a greedy algorithm.

In Chapter 4, we continue to study the dynamic matching problem with heterogeneous supply and

demand types, but focus on more specific forms of reward structures. First, we consider the problem

with horizontally differentiated supply and demand types. In that problem, types have (unidirectional)

“taste” differences. More specifically, supply and demand types are assumed to locate on a unidirectional

circle. The unit matching reward between a supply type j and a demand type i is a decreasing function

with respect to the unidirectional distance from the location of j to that of i on the circle. We show that

there exists a matching priority hierarchy related to “taste” locations: for any given demand (or supply)
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type, the closer its distance to a supply (or demand) type, the higher the priority to match the closer pair.

Along the priority hierarchy, the optimal matching policy has a match-down-to structure for any pair

of demand and supply types: there exist state-dependent thresholds; if the levels of demand and supply

are higher than the thresholds, they should be matched down to the thresholds; otherwise, they should

not be matched. We then study the problem with vertically differentiated supply and demand types,

for which we impose a reward structure in which types have “quality” differences. For these vertically

differentiated types, the optimal matching policy has an even simpler top-down matching structure (in

short, “line up, match up”): line up demand types and supply types in descending order of their “quality”

from high to low; match them from the top, down to some level. When demand and supply types have

the same abandonment rate, the match-down-to levels have monotonicity properties with respect to the

system state, and the one-step-ahead heuristic policy has a simplified state-dependent structure.

In Chapter 5, we study the pricing behaviors of two agents under incentives that generate social

comparison. Independent suppliers in the sharing economy, as well as decision makers in other industries,

often compete with each other for customers through pricing or other decisions. As human beings, those

decision makers are subject to social comparison. In the chapter, the two agents sell differentiated

substitutable products under additive demand uncertainty, and their decisions are influenced by social

incentives. Social comparison theory, as well as conventional wisdom, suggests that social comparison

behaviors, such as behind aversion (upward comparison) and ahead seeking (downward comparison), all

work in the similar fashion to intensify competition. We demonstrate how opposite-directional social

comparisons interact with demand variability to change competitive behaviors. In particular, we show

that the stronger the behind aversion behavior, the more intense the price competition. Surprisingly,

there is a threshold on the market variability above which price competition is more alleviated and below

which price competition is more intensified, when the agents exhibit stronger ahead-seeking behavior.

In addition, we also find that the agents’ biased perceptions of market variability may reduce price

competition as the social comparison effect is influenced in different ways by the agent’s own market

variability and by the apparent market variability of the competitor. These insights are robust under

multiplicative demand uncertainty, but they are reversed for complementary products. We identify the

driving forces behind these results.
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Chapter 2

Optimal Price and Wage, and Fixed

Commission

2.1 Introduction

Unlike traditional businesses, sharing economy platforms, which are essentially intermediary firms that

connect the supply side with the demand side, often employ crowdsourced supply (physical goods or

intangible services) to meet customer demand. For example, ride-hailing platforms such as Uber and

Lyft rely on free-lance drivers who decide when and how long to work. Short-term rental platforms such

as Airbnb crowdsource property listings from hosts who manages the availability of their properties on

their own. Compared with sourcing from suppliers in regular business processes, crowdsourced supply

from independent agents tends to be less costly but has a higher level of uncertainty on the supply side,

due to lack of direct control by the platform. Just like price-sensitive customers on the demand side,

crowdsourced suppliers are also sensitive to their rewards for providing services. Thus wage for suppliers

and price for customers are the two key controls for the platform such as Uber and Lyft to coordinate

supply and demand. Optimally determining both wage and price can be a nontrivial task. On the one

hand, the platform needs to offer a decent wage to incentivize suppliers and a reasonable price to attract

customers. On the other hand, an adequate profit margin (i.e., the gap between the price and wage)

is required to ensure profitability. In addition, time-varying supply and demand conditions often add

to the complexity of the platform’s problem of deciding the optimal price and wage, which need to be

adjusted over time according to the market conditions. For example, Uber implements the so-called

“surge pricing” to contingently match supply with demand in each designated region.

In practice, it is common for the platform to charge a flat, across-the-board commission rate that

applies to all market conditions. For example, Uber started its business taking a 20% commission on all

rides, and now has raised and lowered that rate in different cities depending on the supply of drivers and

4
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Figure 2.1: Demand Driven by Weather and Special Occassion

rider demand. Airbnb charges its hosts a 3% host service fee for each reservation. In a fixed commission

contract, all parties agree on a specific rate, according to which the platform takes a portion of the total

revenue generated through the sharing transactions. (The platform may adjust the fixed rate but keeps

it for a relatively long period of time.) The major reason of such a practice is legality. It qualifies the

platform to receive a brokerage license, as the intermediary business makes supply meet demand without

actually buying and selling like retailers. Another appealing feature of this contract is its simplicity to

understand and implement for both sides of the market. However, such a pre-committed crowdsourcing

contract seems not optimal at the operational level. As supply and demand conditions change over

time, the platform would ideally want to update both price and wage accordingly to match supply with

demand. With hands tied under the flat commission contract, the pricing decision and its associated

wage determined by the preset affine commission contract is suboptimal. In this chapter, we study

the following research questions. Is it possible that the commission contract is indeed optimal for the

platform? If not, how good is this contract?

Depending on time and day, the platform possibly faces many scenarios of market conditions. For

instance, see Figure 2.1.1 On Feb 16, 2016, Tuesday, because there was a heavy rain in the early

afternoon, a peak in the number of Uber trips in Manhattan occurred in addition to the normal two

peaks of a day corresponding to the morning and evening rush. On Feb 23, 2016, Tuesday, it was

drizzling starting at the noon and through the rest of the day, we see that the normal demand pattern

on Tuesday with no rain (e.g., as on Feb 9, 2016, Tuesday) was amplified proportionally due to the rain.

Other than weather, special occasions can also drive demand. On the Valentine’s Day of 2016, which is

a Sunday, demand surged during the day as compared to a normal Sunday such as Feb 21, 2016. The

late-night peak in the demand on Feb 7, 2016, Sunday, is due to the Super Bowl.

In our model, we focus on a market with supply and demand uncertainty, by associating each possible

market condition with some probability. Under each market condition, there are a pool of potential

suppliers with heterogeneous opportunity costs and customers with heterogeneous valuations. For a

given pair of price and wage, there are certain number of customers who are willing to make a purchase

1The plots are generated from the Uber data requested and obtained by fivethirtyeight.com from New York’s Taxi &
Limousine Commission under the Freedom of Information Law. In this data set, for each trip, only the information about
the pickup location and time is available.
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and certain number of suppliers who are willing to provide the service. In other words, there exist a

supply curve and a demand curve for each market condition. Both the suppliers and customers enter

the market after assessing their likelihood of being matched. For a given price and a wage, the platform

matches the demand and the supply after they enter the market.

To study the performance of a fixed commission contract, we start with a benchmark model in which

the firm can freely choose the price and wage for each market condition. That is, in the benchmark,

contingent on the realization of a market condition, the platform jointly sets the price and wage to

maximize its profit. We show that the platform’s optimal price has a U-shaped relationship with the

wage. This implies that campaigns to improve wages and benefits such as imposing a higher minimum

wage for the independent agents in a two-sided market likely also benefit customers on the demand side.

The intuition is that as the wage increases, more suppliers would like to provide the service, and as a

result, the platform is compelled to squeeze its own margin by lowering the price to utilize the larger

amount of supply, resulting in an increase in customer surplus. Moreover, we show that the benchmark

model as a two-dimensional price and wage optimization problem can be reduced to a one-dimensional

problem of finding the most desirable matching quantity for maximizing profit.

Then we compare the optimal commission contract that pre-specifies a linear relationship between

the price and wage, with the benchmark where there is full freedom of choosing the wage and price,

under uncertainty market conditions. We show that if both supply and demand are affine functions with

common wage and price sensitivity across market conditions, a commission contract is indeed optimal.

In particular, if the willingness-to-sell of independent suppliers and the willingness-to-pay of customers

are uniformly distributed and the uncertainty comes from the potential market size of customers and

suppliers, a fixed commission contract is optimal. In general, the fixed commission contract is not

optimal. However, as long as the supply curve is a concave function of wage (this seems consistent

with 2015 US hourly wage data), we show that by using the optimal fixed commission contract, the

platform achieves at least 75% of the optimal profit of the benchmark. For the case where the supply

curve is not concave but has bounded growth, we provide a primitive-dependent performance bound of

the optimal commission contract. For instance, if the supply curve has an increasing rate slower than a

cubic function, we show that the commission contract achieves at least 52.75% of the optimal profit of

the benchmark. We further test performance of the commission contract numerically. The results show

that the actual performance is better than the provable worst case performance bounds.

We extend our base model in three directions. First, we study objectives other than profit maximiza-

tion. Like the base model, a benchmark in which the firm jointly optimizes price and wage can be reduced

to a one-dimensional optimization problem that solves for the desirable matching quantity. Moreover,

by including either supply side or demand side surplus taken into the its objective, the platform would

increase the wage and lower the price, thereby benefiting both sides. When the platform’s objective is

to maximize the social welfare, including the platform’s profit, the supply side and demand side sur-
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plus, the optimal wage becomes the highest, the optimal price becomes the lowest and the matching

quantity becomes the largest. Second, we study piecewise commission contracts as opposed to the fixed

commission contract. We identify the number of pieces needed to guarantee that the performance of

the contract is different from the optimal performance of the benchmark by a given percentage. Third,

motivated by Airbnb, we study a market in which the platform sets the fixed commission, but the indi-

vidual suppliers decide the prices. We show that for a given commission, this price-setting case may lead

to lower prices than the price-taking model, thus hurting the platform. However, by optimally setting

the fixed commission in advance, the platform can mitigate the loss. Our numerical experiments show

that the loss is not large after the fixed commission is optimized in advance. If there is only one market

condition, the platform can completely eliminate the loss.

We make the following three main contributions. First, we show that the two-sided market with

crowdsourced supply is fundamentally different from the traditional supply chain setting and the two-

sided market literature in economics (see more discussion in the literature review). The difference may

be hidden in a more sophisticated setting, e.g., a queueing formulation. By identifying the difference,

we provide a theoretical justification for studying the two-sided matching models from the operational

perspective where the matching quantity is naturally taken as the minimum of the supply and demand

(analogous to the sales volume as the minimum of the capacity and demand in the operations literature).

Second, we show that the two-dimensional price and wage optimization problem can be reduced to a one-

dimensional problem that solves for the most desirable matching quantity, thereby making the problem

significantly simpler. This insight is robust under different platform objectives. It can potentially serve

as a guidance to solve more complicated two-sided pricing problems. For example, we expect that the

same insight would hold for a dynamic two-sided pricing problem where unmatched supply and demand

can be carried from one period to another. Third, we contribute to the supply chain contract literature by

studying the commonly practiced fixed commission contract as a type of crowdsourcing supply contract.

More specifically, we provide constant or easy-to-compute performance bounds for this fixed commission

contract under supply and demand uncertainty.

2.2 Literature Review

Optimal pricing problems have been extensively studied in the revenue management literature. This

stream of papers typically considers a fixed supply side and price-sensitive demand. In contrast, we

consider a supply side sensitive to the wage offered by the platform.

In economics, research on two-sided markets has studied platforms such as credit cards, video game

consoles, and organ allocation/exchange. Rochet and Tirole (2003) consider a general model of com-

petition between two platforms with the transaction volume in the multiplicative form of demand and

supply. Such a form is reasonable for a two-sided market platform with a long-term goal. For instance,
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the credit card company cares about the potential transaction volume in proportion to M ·N if there are

N customers on the demand side using the credit card and M merchants on the supply side accepting

the credit card for payment. For an overview on this stream of research, we refer the readers to Rochet

and Tirole (2006), who also build a model with usage and membership externalities, in addition to pro-

viding a roadmap to the literature. Our paper studies the day-to-day pricing decisions of an on-demand

matching platform that adapt to the changing market conditions, rather than equilibrium analysis and

impact of network externalities. To that end, we model the transaction volume as the minimum of de-

mand and supply quantities. For instance, if in a time period, there are M drivers and N riders within a

neighborhood, the transaction volume is min{M,N}. Such a form of transaction volume is better suited

for an on-demand matching market and is most natural from an operational perspective.

Our paper is most closely related to the recent papers in operations management on price and/or

wage optimization problems faced by on-demand service platforms, in which the retail price and/or the

wage for the suppliers are optimized for maximizing the platform’s profit, social welfare, etc. Taylor

(2016) uses a queueing formulation to model an on-demand platform’s business process. Under the

assumption of a two-point distribution for both customers’ and suppliers’ valuations, the paper derives

the demand rate and number of available suppliers in equilibrium for a given price and wage, and

then maximizes the platform’s profit by optimizing the price and wage. Similarly, Bai et al. (2016)

also consider a queueing model for an on-demand platform, with suppliers’ and customers’ valuations

following general distributions. The authors examine how the parameters, such as the available amount

of supply, customers’ waiting cost, and service rate, affect the optimal price and wage as well as the

system performance. Banerjee et al. (2015) model the ride-hailing problem as a queueing network and

study its fluid approximation. It is shown that under the large market limit, dynamic pricing with prices

instantaneously reacting to supply-demand imbalances does not provide more benefit than the optimal

static pricing. Chen and Hu (2016) study a dynamic market where sequentially arriving suppliers

and customers may wait strategically for better prices. The authors show that a waiting-adjusted

fixed pricing heuristic offered by the intermediary platform can deter strategic behavior and is close to

optimal for a thick market. While those two papers focus on the near-optimality of fixed pricing, Cachon

et al. (2016) study the benefit of dynamic pricing. The authors develop a model with price-sensitive

self-scheduling suppliers, and compare the optimal contract (with dynamic wage and price), dynamic

wage contract, dynamic price contract and the commission contract. They show numerically that the

commission contract is near optimal, and that dynamic pricing is beneficial compared to static pricing.

The previous papers do not consider the spatial element in on-demand matching systems. In contrast,

Bimpikis et al. (2016) consider a spatial pricing problem on a ridesharing network of multiple locations.

The authors show that if the network is strictly balanced or a two-type network, the optimal pricing

policy is implementable by means of a uniform commission rate for all locations. In general, however,

they demonstrate that the fixed commission rate may result in significantly lower profits, particularly in
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the presence of heterogeneity among the demand patterns in different locations. Gurvich et al. (2015)

also study a service platform with self-scheduling suppliers. They control the maximum number of

independent agents allowed to work in a period and the compensation for the agents, and show that

self-scheduling leads to lower profit for the firm and lower service level for customers. Benjaafar et al.

(2015) consider a peer-to-peer sharing model in which the population is heterogeneous in terms of the

usage of a product. Through equilibrium analysis, the authors show that low-usage individuals choose

to be renters and high-usage individuals choose to be owners. They also study the impact of the model

parameters (such as price and commission) on the equilibrium outcomes (such as the level of ownership),

as well as the platform’s optimization problem for maximizing its profit or the social welfare (with respect

to the rental price, for a given ratio of commission). While our paper also studies the platform’s problem

of optimizing wage and price, in contrast to the aforementioned papers, we derive structural properties

of the optimal price and wage, and provide near-optimality bounds for the fixed commission contract

(or prove its optimality in some cases) under market condition uncertainty.

In addition to price and wage optimization problems faced by on-demand service platforms, opera-

tions researchers have also studied other operational issues related to two-sided markets in the sharing

economy. Allon et al. (2012) consider a moderating service platform and show that operational efficiency

achieved by virtually pooling the agents together can harm the overall efficiency of the marketplace.

Arnosti et al. (2015) show that in a matching market, reduced search cost can decrease aggregate wel-

fare and that limiting the visibility of one side of the market can improve the welfare on both sides.

Ibrahim (2015) studies a queueing model with random number of servers, which can happen in the pres-

ence of self-scheduling servers. Other related papers include bike sharing problems (e.g., Kabra et al.

2016 study the impact of bike accessibility and availability on ridership; Henderson et al. 2016 and Shu

et al. 2013 study bike rebalancing problems) and electric vehicle sharing (He et al. 2016).

We also mention the literation on crossing networks in finance, where orders from buyers and sellers

arrive randomly. In contrast with sharing economy platforms and intermediary marketplaces, orders

submitted by buyers and sellers to a crossing network are directly matched at exogenously given prices

and are invisible to the overall market. We refer the readers to Afèche et al. (2014) for a queueing

analysis on such a system and Iyer et al. (2016) for welfare implication of operating a crossing network

alongside traditional “lit” markets.

Our paper is related to the supply chain coordinating contract theory. With the interests of different

parties in the supply chain being misaligned, researchers have designed various incentive-compatible

contracts to achieve optimal performance of the entire supply chain. Examples include the two-part

tariff contract (see, e.g., Jeuland and Shugan 1983), buy-back contract (Pasternack 1985), channel

rebates (Taylor 2002), revenue sharing (Cachon and Lariviere 2005), etc. In our paper, for a given

market condition, a fee for suppliers can coordinate the platform and the suppliers, while imposing

fees for both suppliers and customers can induce the platform to set prices to achieve the optimal
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social welfare. With random market conditions, we study the fixed commission contract. Rather than

considering the optimal supply chain performance, we compare the fixed commission contract with

the optimal contract that maximizes the platform’s profit, and show that it is near optimal for the

platform. The commission rate in the fixed commission contract may be reminiscent of the revenue

sharing parameter in the revenue sharing contract. However, they are fundamentally different. Coupled

with the wholesale price, a continuum of revenue sharing parameters can achieve the same total supply

chain surplus and arbitrarily allocate the coordination benefit between the supplier and retailer. In

contrast, varying the commission rate affects the incentive of suppliers and the platform, resulting in

different platform’s profit, supplier and consumer surplus and total social welfare.

Finally, our work is also related to the robust pricing literature. For example, Bergemann and

Schlag (2011) characterize the optimal pricing policy for the maximin expected utility and minimax

regret problems, where the true demand distribution is known to be within a neighborhood of a model

distribution. Cohen et al. (2015) propose to set the price as if the true demand function is linear and

show that the resulting policy achieves good performance bounds for many common demand functions.

In this paper, rather than the monopoly pricing problem, we consider the wage and price optimization

problem with a two-sided market structure. We show that a pre-committed commission, coupled with

contingent pricing, is “robust” in the sense that it achieve a guaranteed portion of the optimal profit for

the platform, for any demand function and a broad range of supply functions.

2.3 The Model Setup

Consider a platform that coordinates the matching of customer demand for a service with crowdsourced

supply. We will constantly resort to the ride-hailing service platform, e.g., Uber, as an example. Nev-

ertheless, our model is applicable to other on-demand service platforms. Depending on time and day,

the platform possibly faces many market conditions. For example, totally different market conditions

of supply and demand may occur at rush hour and off-peak traffic times; in the same time period on a

weekday as opposed to a weekend; or on the same day but in sunny as opposed to rainy weather. Let

K = {1, 2, . . . ,K} be a set of possible scenarios of market conditions; see Figure 2.2(a) for an illustration.

We assume that Scenario k occurs with probability ρk.

Each scenario is characterized by a demand curve and a supply curve (see Figure 2.2(b)). In Scenario

k, the total amount of customers who are willing to pay for the service at price p is dk(p). We call

dk(p) the raw demand function which naturally should satisfy the downward-sloping property; namely,

dk(p) is a decreasing function in p.2 As is consistent with the operations literature, the amount of

satisfied customers may be capped by the available supply. Given a posted wage w, the total amount

of independent contractors or suppliers, who are willing to provide the service, is sk(w). This is the

2The monotonicity in this paper is in its weaker sense unless otherwise specified.
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(b) Demand and supply curves of scenarios

Figure 2.2: Scenarios of Market Conditions

amount of suppliers who would show up if they were guaranteed to be matched with a customer. We

call sk(w) the raw supply function, which is assumed to be increasing in w. For simplicity, we assume

dk(p) and sk(w) are continuous functions.

Sharing economy platforms often commit to a commission contract that determines a one-to-one

relationship between what the customers pay and what the suppliers get. We define a general commission

contract as follows.

Definition 2.1 (Commission Contract) A commission contract f : R+ → R+ is a scenario-independent

payment schedule, under which for any scenario, the wage offered to the suppliers is w = f(p) if the

price for customers is p.

We see that the general commission contract is a payment schedule determined by the platform and

enforced for all scenarios. In Stage 0, the platform can decide and commit to a commission contract

(Figure 2.3).

Nature	selects	a	scenario.	
The	platform	observes	

Scenario	k	and
sets	price	pk and	wage	

wk=f(pk)

Demand
and	supply	

arrive	and	the	
platform	

matches	supply	
with	demand

Stage	2Stage	1

The	platform	decides	and		
commits	to	a	commission	contract	
w=f(p) regardless	of	the	scenarios

Stage	0

Figure 2.3: Sequence of Events under Commission Contract

In Stage 1, the nature selects a scenario. Given a realized Scenario k, the platform decides on the

price pk, with the wage following from the pre-determined commission contract as wk = f(pk).
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In Stage 2, all customers and suppliers observe p and w, and play a simultaneous game by deciding

on whether to enter the marketplace. The platform clears the market by matching arriving demand

and supply. If there are more suppliers than customers in the marketplace, suppliers are rationed to be

matched with a customer, and vice versa. The rationing rule can be arbitrary and is announced upfront.

The fixed commission contract is a special form of the general commission contract under which the

wage is a fixed portion of the price.

In the benchmark we consider, the sequence of events is as follows (Figure 2.4). In Stage 1, the

nature selects a scenario and the platform freely sets price p and wage w. This is in contrast to the fixed

commission contract, which requires the wage to be a fixed portion of the price. Hence, we call this

model “the benchmark.” In Stage 2, customers and suppliers decide whether to enter the marketplace

and are matched by the platform if they do.

	
Nature	selects	a	

scenario.	The	pla2orm	
observes	Scenario	k	and	
	sets	price	pk	and	wage	

wk	=	fk(pk)	
	

	
	

		Demand	
and	supply	

arrive	and	the	
pla2orm	

matches	supply	
with	demand	

	
	

Stage	2	Stage	1	

Figure 2.4: Sequence of Events: Benchmark

2.3.1 Demand and Supply Formation

We now characterize the behaviors of customers and suppliers in Scenario k, given the observed price p

and wage w (w = f(p) if a commission contract f is used). We allow customers or suppliers to anticipate

their chances of being matched and assume that they know the demand curve dk(p) and supply curve

sk(w). Somewhat surprisingly, the following result shows that the matching quantity in equilibrium

can be computed as if the customers or suppliers are naive in the sense that they do not anticipate the

likelihood of being matched.

Proposition 2.1 For a given price p and wage w, the matching quantity when the suppliers and cus-

tomers strategically anticipate the matching likelihood, is equal to min{dk(p), sk(w)}.

Proof of Proposition 2.1. We first prove the result if customers are naive without taking into account

the chance of being matched but suppliers are strategically anticipating the chance. The case that both

sides are strategic can be proved similarly.

We consider continua of customers and suppliers. The total mass of customers arriving at the platform

is dk(p). Each supplier who is willing to provide the service at wage w either chooses to show up or not

to. Hence, there always exists a mix-strategy equilibrium. Let s̃k(p, w) (≤ sk(w)) be the total mass of
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suppliers who show up at the platform in equilibrium of a game where suppliers simultaneously decide

whether to show up. According to the laws of large numbers for a continuum of random variables,

s̃k(p, w) =
∫
S(t)dt is a deterministic number, where S(t) is the binary random variable indicating

whether supplier t shows up (see Uhlig 1996 who defines the integral under mean square convergence,

or Al-Najjaar 2004 who considers a continuum-like discrete set of random variables).

If sk(w) ≤ dk(p), all suppliers anticipate that if they show up all of them will be matched. Thus,

it is a dominant strategy for each supplier to show up and that all suppliers show up is an equilib-

rium with no other possible equilibrium. As a result, s̃k(p, w) = sk(w) and the matching quantity is

min{dk(p), s̃k(p, w)} = min{dk(p), sk(w)} = sk(w), where the last equality is due to sk(w) ≤ dk(p).

If sk(w) > dk(p), not necessarily all of the suppliers would show up in equilibrium, because if

they did, some of them would be rationed without getting a task and the expected earning is lower

than the perceived wage w. Thus, s̃k(p, w) ≤ sk(w). Moreover, s̃k(p, w) cannot be lower than dk(p);

otherwise if s̃k(p, w) < dk(p), it is strictly beneficial for a positive mass of suppliers who choose not

always to show up to deviate by arriving at the marketplace, which is a contradiction. As a result, we

have s̃k(p, w) ∈ [dk(p), sk(w)] under any mixed-strategy equilibrium. Thus, the matching quantity is

dk(p) ∧ s̃k(p, w) = dk(p) = dk(p) ∧ sk(w), where the last equality is due to sk(w) > dk(p). �

With Proposition 2.1, we can assume that the suppliers are “naive” without loss of generality. The

intuition is as follows. For a given price p and wage w, the potential demand who accepts the price is

dk(p) and the potential supply who accepts the wage is sk(w). If one side, say the demand side, is in

short, agents in the supply side may not always show up, as they need to take into account the chance

of being matched. But they would not lower the chances of showing up such that the supply in the

market is lower than the potential demand. There may be multiple mixed equilibria, but they all share

the same feature that the matching quantity is determined by the side that is in short.

One can also interpret our stylized model as a snapshot of the fluid counterpart of a stochastic

system. For example, in Scenario k, supply and demand arrive at the market following a Poisson process

with supplier arrival rate sk(p) and demand arrival rate dk(p), respectively, over a certain period time.

Assuming suppliers and customers are sufficiently patient not to abandon the wait, the throughput rate

(i.e., the rate at which matched supply and demand pair leave the system) is min{dk(p), sk(w)}. In the

base model, we assume the platform’s objective is to maximize its own profit. In the extensions, we

study and compare the alternative objectives such as maximizing the platform and suppliers’ surplus

and maximizing the total social welfare.

2.4 The Benchmark

In the benchmark, the platform sets and announces the price p and wage w, contingent on the realized

scenario and in anticipation of the market formation as the outcome of the announced price and wage.
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This is consistent with the “surge pricing” practice of the ride-hailing platforms such as Uber and Lyft.

We also assume that sk(0) = 0 (i.e., no supplier would be willing to join the market if the wage is 0),

and that limp→∞ dk(p) = 0 (i.e., demand would be choked off if the price is set outrageously high).

By Proposition 2.1, the profit of the platform in any Scenario k given price p and wage w, πk(p, w),

is the product of the profit margin p − w and the total matched amount of supply and demand, i.e.,

πk(p, w) = (p− w) min{dk(p), sk(w)}.

For notation convenience, in the rest of this section, we focus on one individual scenario, and thus

omit the subscript k for the supply and demand functions. Given the profit margin p−w and the total

supply and demand matched in the scenario, the profit of the platform is

π(p, w) = (p− w) min {s(w), d(p)} . (2.1)

We first investigate how the optimal price changes as a function of exogenously given wage. The

result demonstrates how the platform’s profit maximization problem is different from that of a retailer

in a traditional supply chain setting as maxp(p−w)d(p) or that of an platform in a two-sided matching

market formulated in the economics literature as maxp,w(p−w)s(w)d(p). Then, we proceed to solve the

joint price and wage optimization problem by reducing it to a one-dimension problem.

2.4.1 Optimal Price as a Function of Exogenous Wage.

For a given wage w, denote the market clearing price, by pc(w) ≡ inf {p ≥ 0 | d(p) ≤ s(w)} , denote the

revenue maximizing price, by pm(w) ≡ inf arg maxp≥0(p − w)d(p), and denote the platform’s optimal

price, by p∗(w) = inf arg maxp≥0 π(p;w).

Theorem 2.1 (Optimal Price as a Function of Wage Has a U-shape) Suppose limw→0 s(w) =

s(0) = 0, limp→pc(0) pd(p) = 0 and (p− w)d(p) is quasi-concave in p ∈ [w,∞) for any w. Then

p∗(w) = max{pc(w), pm(w)}

=

 pc(w) that is decreasing in w, for w ≤ w̄,

pm(w) that is increasing in w, for w > w̄,

where w̄ ≡ inf {w | pc(w) < pm(w)}. (If w̄ is ∞, the latter case is moot.)

Proof of Theorem 2.1. Since d(p) is decreasing in p and s(w) is increasing in w, pc(w) is decreasing

in w.

Moreover, pm(w) is increasing in w. This is because, for p′ ≥ p and w′ ≥ w, (p′ − w′)d(p′) −

(p′ − w)d(p′) = −(w′ − w)d(p′) ≥ −(w′ − w)d(p) = (p − w′)d(p) − (p − w)d(p), where the inequality

is due to that w′ ≥ w and d(p) is decreasing in p. Rearranging terms in the above inequality, we have

(p′−w′)d(p′)− (p−w′)d(p) ≥ (p′−w)d(p′)− (p−w)d(p), which implies that (p−w)d(p) has increasing
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differences in (p, w). By Topkis (1998), pm(w) is increasing in w.

As w → 0, we have s(w)→ 0. As mentioned, pc(w) is decreasing in w. We claim that pc(w)→ pc(0)

as w → 0. If this does not hold, there would exist p̄0 < pc(0) such that limw→0 p
c(w) = p̄0 < pc(0).

Then, d(pc(w)+) ≡ limp→pc(w)+ d(p) ≥ d(p̄0+) > 0 for all w > 0. This contradicts the fact that

limw→0 d(pc(w)+) ≤ limw→0 s(w) = 0. Thus pc(w)→ pc(0) as w → 0.

On the other hand, since limp→pc(0)(p−w)d(p) ≤ limp→pc(0) pd(p) = 0, we have pm(w) < pc(0) for all

w > 0. Moreover, recall that we have shown that pc(w) is decreasing in w, pm(w) is increasing in w and

pc(w)→ pc(0) as w → 0. Then there must exist a sufficiently small w0 > 0 such that pc(w0) > pm(w0).

Let w̄ ≡ inf {w | pc(w) < pm(w)} which can be ∞. We have w̄ > 0.

Consider the platform’s profit maximization problem maxp π(p;w) = maxp(p−w)[s(w) ∧ d(p)] for a

given w. For p ≤ pc(w), π(p;w) = (p − w)s(w) is strictly increasing in p provided that s(w) > 0. This

implies that p∗(w) ≥ pc(w). Therefore,

max
p

π(p;w) = max
p≥pc(w)

π(p;w) = max
p≥pc(w)

(p− w)d(p).

If w ≤ w̄, by definition of w̄, we have pc(w) ≥ pm(w). Since (p − w)d(p) is quasi-concave in p, we

have p∗(w) = pc(w), which is decreasing in w (≤ w̄).

If w > w̄, we have pc(w) < pm(w), we have p∗(w) = pm(w), which is increasing in w (> w̄). �

The conditions limw→0 s(w) = s(0) = 0 and limp→pc(0) pd(p) = 0 are innocuous. The former says that

the available amount of supply diminishes to zero when the wage approaches to zero. It would naturally

be satisfied when we derive the supply curve as s(w) = P(X ≤ w), where the supplier opportunity

cost X is a continuous random variable. The latter says that the total generated revenue diminishes

to zero when the price is sufficiently close to the “choke price” pc(0). The quasi-concavity condition of

(p− w)d(p) in p ∈ [w,∞) for any w holds for almost all commonly seen demand functions. In fact, the

condition holds for d(p) = P(Y ≥ p), where the distribution of the customer willingness-to-pay Y has

an increasing generalized failure rate (see, e.g., Van den Berg 2007).

 p*(w)

 pc(w)  pm(w)

wwO

Supply=Demand	 Supply>Demand	
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Figure 2.5: Optimal Price as a Function of Exogenous Wage
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As the wage increases, there is more supply and the price to clear the supply decreases. Hence the

market clearing price pc(w) is always decreasing in w. As the wage rises, the revenue maximizing price

without supply constraints is pushed up, i.e., pm(w) is always increasing in w. Theorem 2.1 says that

for an exogenous wage w, the optimal price is the maximum of the market clearing price pc(w) and

the revenue maximizing price pm(w). As a result, the platform’s optimal price p∗(w) has a U-shaped

relationship with the wage w (see Figure 2.5 for an illustration). The intuition is as follows. On one

hand, when the wage is above a threshold, the supply is ample due to the relatively high wage, and thus

the optimal price is the unconstrained revenue maximizing price, which would increase as the wage rises.

On the other hand, when the wage is below the threshold, the supply is limited due to the relatively low

wage, and thus the optimal price is the market clearing price, i.e., a price such that the sales volume is

equal to the supply. As the wage increases in a neighborhood, more supply comes to the market. To

match up with the total increased supply, the platform optimally sets a lower price! This implies that

campaigns to improve wages and benefits such as imposing a higher minimum wage for the independent

agents in a two-sided market likely also benefit customers on the demand side, when the market tends

to be supply constrained due to low wages.

That the optimal price may decrease in wage is in stark contrast with the traditional supply chain

settings. Consider a supply chain where a retailer procures from its supplier who may in turn procure

from further up-stream suppliers. The retailer faces a downward sloping demand curve d(p) in the

consumer market and the supplier charges the retailer a wholesale price w. Any cost surge in the supply

chain, e.g., a wage increase at some firm along the supply chain, would push up the wholesale price w

and lead to an increase in the optimal retail price p∗(w) = arg maxp(p−w)d(p). This is consistent with

the monotonicity property of the revenue maximizing price.

That the optimal price may decrease in wage is also in stark contrast to the classic economics

literature on two-sided matching. Rochet and Tirole (2003) assume a multiplicative form of transaction

volumes. That is, the platform solves the problem maxp,w(p − w)d(p)s(w). It is easy to see that the

objective function (p−w)d(p)s(w) here is log-supermodular in p and w. As a results, the optimal price

p∗(w) = arg maxp(p− w)d(p)s(w) is increasing in w.

Uber often uses “surge pricing” to rapidly match supply with demand. That is, it raises the price

when ride demand is higher than the number of drivers available. Our results suggest that unlike

conventional views, surge pricing can have a positive effect on riders. Other than rationing the current

limited supply to riders who are less patient, price surge and its resulting wage surge can induce more

drivers to come out. The platform may have an incentive to lower prices to match the newly arrived

drivers. Though our model is one-shot, it may capture the dynamic process in which short-term price

surge leads to more supply entering the market, and as a result, the average price over a slightly longer

horizon (a weighted sum of the high short-term surge price3 and the lower price after the surge period

3Chen et al. (2015) observe that surge pricing of Uber is often short-lived.
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to match the remaining demand with newly arriving supply) is lower.

2.4.2 Joint Price and Wage Control

We will now solve the price and wage optimization problem maxp,w π(p, w) = (p− w) min {s(w), d(p)}.

The following proposition shows that instead of maximizing the profit with respect to p and w, we

can first find the optimal matching quantity z∗, from which the optimal price p∗ and wage w∗ can be

recovered.

Theorem 2.2 (Maximization of Platform Profit) Let z∗ ∈ arg maxz≥0[d−1(z)− s−1(z)]z. Then

the optimal price and wage are, respectively,

p∗ = d−1(z∗) and w∗ = s−1(z∗),

where d−1(z) ≡ max{p ≥ 0 | d(p) = z} and s−1(z) ≡ min{w ≥ 0 | s(w) = z}.

Proof of Theorem 2.2. Let m = p−w be the profit margin. We can rewrite the profit function π(p, w)

as π̃(w,m) = π(w +m,w) = mmin {s(w), d(w +m)}. For a given value of m, π̃(w;m) is quasi-concave

in w. This is because, s(w) and d(w + m), as monotone functions, are quasi-concave in w, and the

quasi-concavity is preserved under minimization. It is easy to see that for a given m, π̃(w;m) achieves

the maximum when s(w) = d(w+m). Let ŵ(m) = min{w ≥ 0 | s(w) = d(w+m)} for a given m. Thus

s(ŵ(m)) = d(ŵ(m) +m). We can solve for the largest margin m such that s(ŵ(m)) = d(ŵ(m) +m) as

m∗(ŵ) = d−1(s(ŵ)) − ŵ. It is clear that m∗(ŵ) is decreasing in ŵ from the monotonicity properties of

d(p) and s(w). The optimal price p∗ = m∗(ŵ) + ŵ = d−1(s(ŵ)). Thus, maximizing the platform’s profit

can be written as follows,

max
ŵ≥0

[d−1(s(ŵ))− ŵ]s(ŵ) = max
z≥0

[d−1(z)− s−1(z)]z,

which is maximized at z∗. As a result, the optimal wage and price can be recovered as w∗ = s−1(z∗)

and p∗ = d−1(z∗). �

Theorem 2.2 reduces the two-dimensional price and wage optimization problem to a one-dimensional

problem. The intuition behind is that for a given scenario, in anticipation of the market formation,

there is no incentive for the platform to set the price and wage such that there is more supply arriving

than the demand or vice versa. That is, it is optimal for the platform to set the price and wage such

that the arriving demand is equal to the arriving supply. Hence, the problem reduces to finding the

optimal matching quantity, from which the optimal price and wage can be obtained. The optimal

matching quantity z∗ to maxz≥0[d−1(z)− s−1(z)]z becomes easy to obtain when the objective function

[d−1(z) − s−1(z)]z is concave, a condition which is satisfied by the following commonly used demand

and supply functions.
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(D1) d(p) = (d0−βp)θ, d0, β > 0. In this case, d−1(z) = (d0−z1/θ)/β and zd−1(z) = (d0z−z1+1/θ)/β,

which is concave as long as θ > 0.

(D2) d(p) = d0p
−βθ, d0, β > 0. In this case, d−1(z) = (z/d0)−1/(βθ) and zd−1(z) = z1−1/(βθ)d

1/(βθ)
0 ,

which is concave as long as βθ > 1.

(S1) s(w) = (s0 + αw)γ , s0 ≥ 0, α > 0. In this case, zs−1(z) = z(z1/γ − s0)z/α is convex in z if

γ > 0.

(S2) s(w) = s0w
αγ , s0, α > 0. In this case, zs−1(z) = z(z/s0)1/(αγ) is convex in z if γ > 0.

Moreover, we can obtain closed-form expressions of z∗, p∗ and w∗ if supply and demand are linear

functions, say, s(w) = w and d(p) = d0 − βp. In this case, d−1(z) = (d0 − z)/β and s−1(z) = z. Thus,

[d−1(z) − s−1(z)]z = [d0 − (1 + β)z]z/β. It is easy to see that z∗ = d0/[2(1 + β)]. It then follows that

p∗ = d−1(z∗) = (d0 − z∗)/β = 1+2β
2β(1+β)d0 and w∗ = s−1(z∗) = z∗ = d0/[2(1 + β)].

2.5 Commission Contracts

Recall that a commission contract f specifies a relation w = f(p) between the price and wage. Given a

realized Scenario k (with probability ρk), the platform decides on the price pk, with the wage following

from the pre-determined commission contract as wk = f(pk), to maximize the profit πk(pk, wk) for that

scenario. The platform solves the following problem to maximize the expected profit.

max
{pk,wk}∀k

∑
k∈K ρkπk(pk, wk),

s.t. wk = f(pk). (2.2)

We denote the optimal value of problem (2.2) by P f .

Let (p∗k, w
∗
k) ∈ arg maxp,w πk(pk, wk), i.e., p∗k and w∗k are the optimal price and wage in Scenario

k, respectively, when the platform can freely choose the price and wage. The corresponding optimal

expected profit is P ∗ ≡
∑
k∈K ρkπk(p∗k, w

∗
k). The following result shows that this optimal expected

profit can always be almost attained by some commission contract f , if we allow f : R+ → R+ to take

an arbitrary functional form.

Proposition 2.2 (Connecting the Dots) For any ε > 0, there exists an ε-optimal commission con-

tract f such that P ∗ − ε ≤ P f ≤ P ∗.

Proof of Proposition 2.2. Without loss of generality, we assume that p∗1 ≤ p∗2 ≤ · · · ≤ p∗K .

We choose a sufficiently small number δ > 0 and define p̃k recursively. Let p̃1 = p∗1, p̃k = p̃k−1 + δ if

p̃k = p̃∗k−1, and p̃k = p∗k otherwise. By construction, limδ→0 p̃k = p∗k for all k ∈ K. For ease of notation,

let p̃0 = w∗0 = 0.

Consider the following piecewise linear function f parameterized by δ. For p ∈ [p̃k−1, p̃k], let f(p) =
w∗k−w

∗
k−1

p̃k−p̃k−1
(p− p̃k−1)+w∗k−1. Note that the curve p→ f(p) passes all the points {(p̃k, w∗k) | k = 1, . . . ,K}.
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In Scenario k, the optimal profit under the commission contract f , namely πk(f), is no less than

πk(p̃k, w
∗
k). Given that dk is a continuous function, limδ→0 πk(f) ≥ limδ→0 πk(p̃k, w

∗
k) = πk(p∗k, w

∗
k).

Then, limδ→0 P
f = limδ→0

∑
k∈K ρkπk(f) =

∑
k∈K ρk limδ→0 πk(f) ≥

∑
k∈K ρkπk(p∗k, w

∗
k) = P ∗. Thus,

for any ε > 0, there exists δ with the corresponding function f such that P ∗ − ε < P f ≤ P ∗. �

Proposition 2.2 essentially finds a curve w = f(p) that passes through the points (p∗1, w
∗
1), . . . , (p∗K , w

∗
K),

or almost passes through some points (p∗k′ , w
∗
k′) and (p∗k′′ , w

∗
k′′), if p∗k′ = p∗k′′ . The latter perturbation

avoids the situation where one price corresponds to multiple wages in the commission contract. Com-

pared with such a commission contract f , the fixed commission contract, defined below, is simpler and

more practical.

Definition 2.2 (Fixed Commission Contract) A fixed commission contract f is a commission con-

tract in the form of w = f(p) = γp, where γ ∈ [0, 1].

Under the fixed commission contract, the platform takes the given portion, γ, of the revenue in any

scenario. Thus, 1 − γ is the fixed commission rate charged by the platform. Despite its simplicity, the

fixed commission contract can achieve the optimal expected profit P ∗ under certain conditions, as shown

by the following proposition.

Proposition 2.3 (When Fixed Commission Contract Is Optimal) If dk(p) = dk0−βp and sk(w) =

αw, then the fixed commission contract f(p) = β(α+ 2β)−1p is optimal.

Proof of Proposition 2.3. If dk(p) = dk0 − βp and sk(w) = αw, then d−1
k (z) = β−1(dk0 − z) and

s−1
k (z) = α−1z. Then, [d−1

k (z)−s−1
k (z)]z = [β−1(dk0−z)−α−1z]z = −(β−1 +α−1)z2 +β−1dk0z attains

its maximum at z∗k = 1
2β
−1(α−1 + β−1)−1dk0 = 1

2α(α + β)−1dk0. By Theorem 2.2, the optimal wage

and price in Scenario k is given by w∗k = s−1
k (z∗k) = 1

2 (α + β)−1dk0 and p∗k = d−1
k (z∗k) = 1

2β
−1(α +

2β)(α + β)−1dk0. Since w∗k/p
∗
k = β(α + 2β)−1 is independent of k, the fixed commission contract

f(p) = β(α+ 2β)−1p is optimal. �

For a fixed commission contract to be optimal, the conditions in Proposition 2.3 require both demand

and supply functions to be linear and that only the potential consumer market size dk0 varies across

different scenarios while the price sensitivities α and β remain the same. If these conditions are not

satisfied, we cannot guarantee the optimality of the fixed commission contract. We first present an

illustrative numerical example on the performance of the fixed commission contract.

2.5.1 An Illustrative Example of Fixed Commission Contract

Suppose that in a scenario k ∈ K, the supply function is sk(w) = sk0Fs,k(w) and the demand function

is dk(p) = dk0[1 − Fd,k(p)]. Here, Fs,k (resp. Fd,k) is the cumulative distribution function (c.d.f.) of

the conditional normal distribution (conditioned on nonnegative values) with mean µs,k (resp. µd,k)

and standard deviation σs,k (resp. σd,k). The supply and demand curves are obtained assuming that a

supplier joins the market if and only if the wage exceeds his/her willingness-to-sell (opportunity cost for

providing services), a customer joins the market if and only if the price is below his/her willingness-to-
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pay (valuation of the service), and both supplier’s willingness-to-sell and customer’s willingness-to-pay

follow normal distributions. The parameters sk0 and dk0 represent the numbers of the potential suppliers

and customers, respectively. Recall that ρk is the probability for observing Scenario k ∈ K.

We consider K = 10 scenarios. The parameters sk0, dk0, µs,k, σs,k, µd,k, σd,k and ρk are chosen as

in Table 2.1. To isolate the effect of the market size, in this example, the pool size of potential suppliers

and customers is held fixed (sk0 = 1, dk0 = 1.2 for all k ∈ K). The mean of the suppliers’ opportunity

cost is increasing across the scenarios and so is the mean of the customers’ valuation. Imagine as k

increases, the weather condition worsens, and customers value more going by a car more than say, using

a bike sharing service, but at the same time, drivers also value staying at home more than driving. To

focus on the first order effect, the standard deviation σs,k of the suppliers’ cost is set to 1
3 of the mean

µs,k and the same is done on the demand side.

In each Scenario k, the optimal price p∗k, optimal wage w∗k, and the ratio γ∗k = w∗k/p
∗
k in the benchmark

are displayed in Table 2.2. As expected, we see that both price p∗k and wage w∗k increase in k. Since both

suppliers’ cost and customers’ valuation increase as the weather condition worsens, the platform needs

to increase the wage to attract more suppliers and increase the price to suppress the growing demand.

We observe that the optimal wage/price ratio γ∗k decreases in k. This implies that the platform does

not need to increase the commission ratio to incentivize the suppliers. This is because even though γ∗k

decreases as k increases, the optimal wage w∗k = γ∗kp
∗
k is in fact increased and is sufficient for incentivizing

the drivers to get on the street.

Table 2.1: Parameters in the Illustrative Example

Scenario k 1 2 3 4 5 6 7 8 9 10

sk0 1 1 1 1 1 1 1 1 1 1

µs,k 15 16 17 18 19 20 21 22 23 24

σs,k 5 5.33 5.67 6 6.33 6.67 7 7.33 7.67 8

dk0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

µd,k 10 12 14 16 18 20 22 24 26 28

σd,k 3.33 4 4.67 5.33 6 6.67 7.33 8 8.67 9.33

ρk 0.05 0.05 0.1 0.1 0.2 0.2 0.1 0.1 0.05 0.05

Table 2.2: Optimal Wages, Prices and Ratios in the Illustrative Example

Scenario k 1 2 3 4 5 6 7 8 9 10

p∗k 14.20 16.52 18.79 25.90 27.11 28.32 29.53 30.74 31.95 33.16

w∗k 9.24 10.59 11.87 13.10 14.28 15.44 16.57 17.69 18.79 19.88

γ∗k 0.651 0.641 0.631 0.622 0.614 0.606 0.599 0.593 0.587 0.581

When the platform freely sets both wage and price in each scenario, the optimal expected profit

of the platform in the benchmark is achieved by applying the wage-price pair (w∗k, p
∗
k) in Scenario k

and is equal to
∑
k∈K ρkπk(w∗k, p

∗
k) = 2.311. Under the fixed commission contract w = γp, the optimal
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expected profit of the platform is achieved by applying the price p̌k(γ) = arg maxp≥0 πk(γp, p) for given

γ in Scenario k. The optimal fixed commission contract for maximizing the platform’s profit can be

found by solving maxγ∈[0,1]

∑
k∈K ρkπk(γp̌k(γ), p̌k(γ)). With the given parameters, the optimal ratio

γ̌ = 0.6063. This fixed commission contract achieves a surprisingly high profit 2.307, which is 99.82% of

the optimal profit achieved by {(w∗k, p∗k)}k∈K.

2.5.2 Performance Bounds of Fixed Commission Contract

Motivated by the illustrative example, we investigate the performance of the fixed commission contract.

We will show that under general conditions, the optimal fixed commission contract is indeed able to

achieve a decent portion of optimality.

Theorem 2.3 (Concave Supply Curve: 3/4-Optimality of Fixed Commission) Suppose sk(w)

is concave for all k ∈ K.

(i) For any Scenario k, γ∗k ≡ w∗k/p∗k ≤ 50%.

(ii) The expected profit achieved by a heuristic commission contract with γ = (1−γ̄)γ̄
(1−γ) (≤ 50%) is at least

3
4P
∗, where γ̄ = maxk∈K γ

∗
k and γ = mink∈K γ

∗
k.

Proof of Theorem 2.3. Under a given commission contract w = γp where γ ∈ [0, 1], the optimal

profit of the platform in Scenario k is P ∗k (γ) = maxp(1− γ)p[sk(γp)∧ dk(p)]. Define γ∗k ≡ w∗k/p∗k, where

(p∗k, w
∗
k) ∈ arg maxp,w πk(pk, wk).

(i) If γ ≤ γ∗k , we have γ/γ∗k ≤ 1. By the concavity of sk(·),

sk(γp) = sk(
γ

γ∗k
· γ∗kp+ (1− γ

γ∗k
) · 0) ≥ γ

γ∗k
sk(γ∗kp) + (1− γ

γ∗k
)sk(0) =

γ

γ∗k
sk(γ∗kp), (2.3)

where the last equality is due to sk(0) = 0 for all k. Then it follows that

P ∗k (γ) = max
p

(1− γ)p[sk(γp) ∧ dk(p)]

≥max
p

(1− γ)p{[ γ
γ∗k
sk(γ∗kp)] ∧ dk(p)}

≥(1− γ)
γ

γ∗k
max
p

p[sk(γ∗kp) ∧ dk(p)]

=
(1− γ)γ

(1− γ∗k)γ∗k
max
p

(1− γ∗k)p[sk(γ∗kp) ∧ dk(p)]

=
(1− γ)γ

(1− γ∗k)γ∗k
P ∗k (γ∗k)

=
(1− γ)γ

(1− γ∗k)γ∗k
πk(p∗k, w

∗
k), (2.4)

where the first inequality is due to (2.3) and the last equality holds because γ∗k = w∗k/p
∗
k, so that P ∗k (γ∗k)

equals the optimal profit πk(p∗k, w
∗
k) in Scenario k.
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Note that (2.4) holds for an arbitrary γ ≤ γ∗k . Now let γ = 1
2 . Suppose γ∗k >

1
2 . Then (1−γ∗k)γ∗k <

1
4

by the property of the quadratic function x − x2. With γ = 1
2 , [(1 − γ)γ]/[(1 − γ∗k)γ∗k ] > 1. Then by

(2.4), P ∗k (γ = 1
2 ) > πk(p∗k, w

∗
k). However, this contradicts the optimality of πk(p∗k, w

∗
k). Thus, for all k,

γ∗k ≤
1

2
,

and therefore γ̄ ≤ 1
2 . Then (1− γ∗k)γ∗k is increasing in γ∗k ∈ [0, 1

2 ]. Thus, by (2.4),

P ∗k (γ)

πk(p∗k, w
∗
k)
≥ (1− γ)γ

(1− γ∗k)γ∗k
≥ (1− γ)γ

(1− γ̄)γ̄
. (2.5)

(ii) For γ ≥ γ∗k ,

P ∗k (γ) = max
p

(1− γ)p[sk(γp) ∧ dk(p)]

≥(1− γ)p∗k[sk(γp∗k) ∧ dk(p∗k)]

≥(1− γ)p∗k[sk(γ∗kp
∗
k) ∧ dk(p∗k)]

=(1− γ)(1− γ∗k)−1(1− γ∗k)p∗k[sk(γ∗kp
∗
k) ∧ dk(p∗k)]

=(1− γ)(1− γ∗k)−1πk(p∗k, w
∗
k),

where the second inequality is due to γ ≥ γ∗k . Then it follows that

P ∗k (γ)

πk(p∗k, w
∗
k)
≥ 1− γ

1− γ∗k
≥ 1− γ

1− γ
. (2.6)

By (2.5) and (2.6), for γ ∈ [γ, γ̄] ⊆ [0, 1
2 ],

P ∗k (γ)

πk(p∗k, w
∗
k)
≥ min

®
(1− γ)γ

(1− γ̄)γ̄
,

1− γ
1− γ

´
=

1− γ
(1− γ̄)γ̄

min

®
γ,

(1− γ̄)γ̄

1− γ

´
=


(1− γ)γ

(1− γ̄)γ̄
if γ ≤ (1− γ̄)γ̄

1− γ
,

1− γ
1− γ

otherwise.

The right-hand-side of the above inequality achieves the maximum value, which is equal to (1 −

γ)−1
[
1− (1− γ)−1(1− γ̄)γ̄

]
, when

γ = γ∗ ≡ (1− γ̄)γ̄

(1− γ)
.

Let y = (1 − γ)−1. Note that γ can range from 0 to γ̄. Thus, y ranges from 1 to (1 − γ̄)−1. Then, for

any k ∈ K, we have
P ∗k (γ∗)

πk(p∗k, w
∗
k)
≥ y[1− y(1− γ̄)γ̄].

The right-hand-side y[1 − y(1 − γ̄)γ̄] is increasing for 0 ≤ y ≤ [2(1 − γ̄)γ̄]−1 and decreasing for y >

[2(1−γ̄)γ̄]−1. Given that γ̄ ≤ 1
2 , we have [2(1−γ̄)γ̄]−1 ≥ (1−γ̄)−1. Therefore, the range of y, [1, (1−γ̄)−1],
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is to the left of the changeover point [2(1− γ̄)γ̄]−1, implying that the minimum of y[1− y(1− γ̄)γ̄] with

respect to y is achieved at y = 1. When y = 1, y[1− y(1− γ̄)γ̄] = 1− (1− γ̄)γ̄ ≥ 3
4 since γ̄ ∈ [0, 1

2 ]. As

a result, for any k ∈ K,

P ∗k (γ∗)

πk(p∗k, w
∗
k)
≥ min
y∈[1,(1−γ̄)−1]

y[1− y(1− γ̄)γ̄] = 1− (1− γ̄)γ̄ ≥ 3

4
.

It follows that

∑
k∈K ρkP

∗
k (γ∗)∑

k∈K ρkπk(p∗k, w
∗
k)
≥
∑
k∈K ρk · 3

4 · πk(p∗k, w
∗
k)∑

k∈K ρkπk(p∗k, w
∗
k)

=
3

4
,

which proves the proposition. �

Surprisingly, Theorem 2.3 imposes no assumption on the demand function dk(p), except that it

should be a downward-sloping curve. This is due to that the result in Theorem 2.3(i) only depends

on the concavity of the supply curve. Note that in the benchmark, the platform sets price and wage

such that the demand is equal to the supply for any given market condition. As a result, the upper

bound on the optimal wage and price ratio may only depend on the shape of the curve of one side,

say, the supply side, but not on that of the other side. Theorem 2.3(ii) says that as long as the supply

curve is concave, a fixed commission contract can achieve 75% of the optimality of the benchmark. This

constant bound on the performance is obtained based on Theorem 2.3(i). The idea is that though for

a given realized scenario, the platform may not be able to choose the optimal wage and price ratio γ∗k

in the benchmark, by carefully choosing a fixed commission rate, the optimality loss is not too large.

The heuristic commission rate is obtained by maximizing the lower bound on the fraction of optimality

achieved with respect to the commission rate.

Theorem 2.3(i) says that for any scenario the ratio of the optimal wage to price in the benchmark

should be no more than 50% (i.e., the commission rate is over 50%). This ratio may seem overly low and

maybe caused by lack of competition in the model. Uber currently leaves the drivers a fraction of 70%-

80% of fares paid by the riders. Thus, Theorem 2.3(i) may imply that the Uber’s current pricing practice

is not profit maximizing, which is consistent with the news reports saying that Uber is not making profit.

Indeed, in practice, the platform may charge a lower commission due to fairness concerns and to improve

supplier welfare. Nevertheless, platforms like Uber have strong bargaining powers over their suppliers

and may try to raise the commission to increase profit if it would not overly irritating the suppliers.

For example, Uber and Lyft started with a 20% commission, and later increased the rate to 25% in

most cities. Currently, the Lyft fee in New York City is 31.4%. Bringing the commission below 50%

would accordingly lower the performance bound (see, e.g., Theorem 2.4 with possibly higher wage/price

ratio and lower performance bound, where the supply curve can be nonconcave). Nevertheless, a lower

performance bound does not necessarily imply significantly poorer performance of the fixed commission

contract. As we will show numerically, even if the supply function is nonconcave (in which case a
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performance ratio lower than 75% can be guaranteed), the fixed commission contract still achieves good

performance.
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Figure 2.6: Net Hourly Earning Distribution of US in 2015

To obtain some ideas on the shape of the supply function sk(w), we consider the latest dataset from

Social Security Administration on the distribution of wage earners in the United States, which is for the

year of 2015.4 The dataset counts the numbers of wage earners in different annual net compensation

intervals. We focus on those with annual net compensation below $180,000 (consistent with our focal

group of Uber drivers), who are grouped into net compensation intervals of of length $5,000. For example,

the dataset records a total number of 10,963,340 wage earners with annual net earnings between $20,000

and $24,999.99. We assume that a typical wage earner works 40 hours a week, 52 weeks. Then, the net

annual compensation intervals can be converted to net hourly compensation intervals. For example, the

interval [$20, 000, $24, 999.99] is converted to [$9.62, $12.02]. For each net hourly compensation interval,

we use the upperbound of the interval (e.g., $12.02) as the proxy of net hourly earning for all wage

earners within that interval, and plot the cumulative distribution function of hourly earning in Figure

2.6. The distribution of net hourly earning can serve as a proxy for the distribution of willingness-to-

sell/opportunity cost of the independent suppliers of a sharing economy platform such as Uber, which is

different from the supply function up to a scalar. Figure 2.6 shows that the distribution of opportunity

cost in 2015 is concave.

If the supply function is not concave, we study the performance of the fixed commission contract

under the following assumption.

4The data is available at https://www.ssa.gov/cgi-bin/netcomp.cgi?year=2015.
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Assumption (S). sk(y)/sk(x) ≥ (y/x)λ for all y ≤ x and k ∈ K.

Assumption (S) is equivalent to the following condition: [log sk(x)− log sk(y)]/(log x− log y) ≤ λ for

all y ≤ x and k ∈ K. In other words, the increasing rate of the supply function with respect to the wage

is bounded from above by λ in a log-log plot. If sk(0) = 0 and sk(w) is concave in w, Assumption (S)

holds with λ = 1.

Theorem 2.4 (Supply Curve with Bounded Growth: Bound of Fixed Commission) Suppose

Assumption (S) holds.

(i) For any Scenario k, γ∗k ≡ w∗k/p∗k ≤ λ(1 + λ)−1.

(ii) The expected profit achieved by a heuristic commission contract with γ = [(1− γ̄)/(1− γ)]λ
−1

γ̄ is

at least a fraction, 1− (1 + λ)−(1+λ−1)λ, of the optimal expected profit P ∗.

Proof of Theorem 2.4. Suppose that sk(y)/sk(x) ≥ (y/x)λ for all k ∈ K and y ≤ x. Then, for γ ≤ γ∗k ,

we have sk(γp)/sk(γ∗kp) ≥ (γ/γ∗k)λ. It follows that

P ∗k (γ) = max
p

(1− γ)[sk(γp) ∧ dk(p)] ≥(1− γ) max
p

{
[(γ/γ∗k)λsk(γ∗kp)] ∧ dk(p)

}
≥(1− γ)(γ/γ∗k)λ max

p
{sk(γ∗kp) ∧ dk(p)}

=
(1− γ)γλ

(1− γ∗k)(γ∗k)λ
πk(p∗k, w

∗
k),

which implies that

P ∗k (γ)/πk(p∗k, w
∗
k) ≥ (1− γ)γλ/[(1− γ∗k)(γ∗k)λ]. (2.7)

It is easy to verify that

(1− γ)γλ ≤ (1 + λ)−(1+λ)λλ, (2.8)

with the equality achieved at γ = λ(1 + λ)−1.

Next, we show that γ∗k ≤ λ(1 + λ)−1. If otherwise, we can set γ = λ(1 + λ)−1. Then, we have

maxp πk(p, γp)/maxp πk(p, γ∗kp) ≥ (1−γ)γλ/[(1−γ∗k)(γ∗k)λ] > 1, which contradicts the optimality of γ∗k .

Furthermore, since (1− γ)γλ is increasing in γ for γ ∈ [0, λ(1 + λ)−1], (1− γ∗k)(γ∗k)λ ≤ (1− γ̄)γ̄λ. Then

by (2.7), we have P ∗k (γ)/πk(p∗k, w
∗
k) ≥ (1− γ)γλ/[(1− γ̄)γ̄λ] for γ ≤ γ∗k .

For γ > γ∗k , we have P ∗k (γ)/πk(p∗k, w
∗
k) = (1 − γ) maxp p[sk(γp) ∧ dk(p)]/{(1 − γ∗k) maxp p[sk(γ∗kp) ∧

dk(p)]} ≥ (1− γ)/(1− γ∗k) ≥ (1− γ)/(1− γ), where the first inequality is due to γ > γ∗k and the second

inequality is due to γ∗k ≥ γ.

For γ ∈ [0, 1] and any k ∈ K, we have

P ∗k (γ)/πk(p∗k, w
∗
k) ≥min

®
(1− γ)γλ

(1− γ̄)γ̄λ
,

1− γ
1− γ

´
=

(1− γ)

(1− γ̄)γ̄λ
min

®
γλ,

(1− γ̄)γ̄λ

1− γ

´
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=


(1− γ)γλ

(1− γ̄)γ̄λ
if γ ≤

Ç
1− γ̄
1− γ

åλ−1

γ̄,

1− γ
1− γ

otherwise.

(2.9)

Note that [(1−γ̄)/(1−γ)]λ
−1

γ̄ ≤ γ̄ ≤ λ(1+λ)−1. Since (1−γ)γλ is increasing in γ for γ ≤ λ(1+λ)−1,

it is increasing in γ for γ ≤ [(1− γ̄)/(1− γ)]λ
−1

γ̄. The right-hand-side of (2.9) is maximized at

γ∗ = [(1− γ̄)/(1− γ)]λ
−1

γ̄,

with the maximum value equal to (1− γ)−1
¶

1− [(1− γ̄)/(1− γ)]λ
−1

γ̄
©

.

Let y = (1− γ)−1. Then y ∈ [1, (1− γ̄)−1] and

(1− γ)−1
¶

1− [(1− γ̄)/(1− γ)]λ
−1

γ̄
©

= y
¶

1− (1− γ̄)λ
−1

γ̄yλ
−1
©
.

Note that the right-hand-side of the above equation, y
¶

1− (1− γ̄)λ
−1

γ̄yλ
−1
©

, is increasing in y for

y ≤
[
(1− γ̄)γ̄λ(1 + λ−1)λ

]−1
, and decreasing in y for y ≥

[
(1− γ̄)γ̄λ(1 + λ−1)λ

]−1
. Since γ∗k ≤

λ(1 + λ)−1, γ̄ ≤ λ(1 + λ)−1 = (1 + λ−1)−1. Hence, (1 − γ̄)−1 ≤
[
(1− γ̄)γ̄λ(1 + λ−1)λ

]−1
. Then

the function y
¶

1− (1− γ̄)λ
−1

γ̄yλ
−1
©

is increasing in y over y ∈ [1, (1 − γ̄)−1] and thus achieves

the minimum at y = 1. As a result, (1 − γ)−1
¶

1− [(1− γ̄)/(1− γ)]λ
−1

γ̄
©
≥ 1 − (1 − γ̄)λ

−1

γ̄ =

1 − [(1 − γ̄)γ̄λ]λ
−1 ≥ 1 − [(1 + λ)−(1+λ)λλ]λ

−1

= 1 − [(1 + λ)−(1+λ−1)λ], where the second inequality is

due to (2.8). Thus, we have shown that for any k ∈ K, P ∗k (γ∗)/πk(p∗k, w
∗
k) ≥ 1 − (1 + λ)−(1+λ−1)λ and

hence,
∑
k∈K ρkP

∗
k (γ∗)/

∑
k∈K ρkπk(p∗k, w

∗
k) ≥ 1− (1 + λ)−(1+λ−1)λ. �

Proposition 2.4 shows for a given λ that bounds the growth rate of the supply curve in the log-

log plot, the upper bound λ(1 + λ)−1 on optimal commission ratio and the relative-to-optimal ratio

1 − (1 + λ)−(1+λ−1)λ. The former increases and the latter decreases in λ. See Table 2.3 for computed

ratios corresponding some values of λ. We can see that if Uber’s 80% commission rate was indeed

optimal, the supply curve would grow as fast as the quartic function. We can also see that if the

supply curve increases slower than the cubic function, the worst case ratio on the performance of the

fixed commission contract, compared to the optimal contingent pricing, is over 52%. Note that the

percentages in Table 2.3 are just guaranteed performance lower bounds. The actual performance of the

fixed commission contract, as we will show in Section 2.5.3, is often much better.

Table 2.3: Guaranteed Performance Bound of Fixed Commission Contract

λ 1 2 3 4

Upper bound on optimal commission ratio 50% 66.67% 75% 80%

Guaranteed relative-to-optimal ratio 75% 61.51% 52.75% 46.50%
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2.5.3 Numerical Study

We further numerically investigate the performance of the fixed commission contract with randomly

generated instances. As in the illustrative example, we consider conditional normal distribution for

supplier’s opportunity costs and customers’ valuations. For the conditional-normally distributed supply

cost, the supply curve is neither convex nor concave. We consider K = 48 scenarios in total. Following

the same notation as in Subsection 2.5.1, we draw the parameters sk0, µs,k, σs,k, dk0, µd,k and σd,k

independently and uniformly at random, in the following manner: sk0 ∼ U [0, 1], µs,k ∼ U [10, 20],

σs,k ∼ U [0.1µs,k, 0.4µs,k], dk0 ∼ U [0, 1], µd,k ∼ U [10, 20] and σs,k ∼ U [0.1µs,k, 0.4µs,k], where U [A,B]

denotes the uniform distribution over the interval [A,B]. To generate the probabilities ρk, k ∈ K, we

first draw ρ̃k ∼ U [0, 1] for every k, and then normalize the ρ̃k’s, i.e., ρk = ρ̃k/
∑
k∈K ρ̃k.

We generate a total number of 400 instances of a combination of parameters for the K = 48 number

of scenarios, and summarize the statistics on the performance of the best fixed commission contract in

Table 2.4. The results show that the performance of the best fixed commission contract is consistently

good, with the worst case achieving 82.54% of the optimality.

Table 2.4: Statistics of the Performance of the Fixed Commission Contract: Normal Distributions

Maximum Minimum Mean Median Standard Deviation

96.30% 82.54% 91.07% 91.33% 2.32%

We further generate 400 instances where the suppliers’ cost X and customers’ valuation Y follow log-

normal distributions, i.e., log(X) follows a normal distribution with mean µs,k and standard deviation

σs,k, and log(Y ) follows a normal distribution with mean µd,k and standard deviation σd,k. The number

of scenarios is still K = 48. We randomly draw all the parameters in the same way as we did for the

normal distributions. Table 2.5 shows the performance of the fixed commission contract. While the

performance is slightly worse compared with that under the normal distributions, it is still consistently

good, with even the worst case performing better than the performance guarantee 75% we obtained for

the case of concave supply curves.

Table 2.5: Statistics of the Performance of the Fixed Commission Contract: Log-Normal Distributions

Maximum Minimum Mean Median Standard Deviation

95.43% 76.52% 88.35% 88.59% 3.23%
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2.6 Extensions

2.6.1 Maximizing Platform Profit plus Supplier Surplus, or Social Welfare

In the benchmark model of Section 2.3, the platform contingently set price and wage to maximize profit.

Here we consider other objectives of the platform. We concentrate on one scenario k ∈ K, and thus drop

the index k in all relevant functions.

To model the supply side and demand side surplus, let s0 and d0 be the potential amount of supply

and demand in the market, respectively. Suppose that X is the opportunity cost of a randomly selected

supplier and Y is the valuation of a randomly selected customer. Only the suppliers with opportunity

cost lower than the wage w and customers with valuation higher than the price p will enter the market.

Then, the supply curve and the demand curve are given as, s(w) = s0P(X ≤ w) = s0FX(w) and

d(p) = d0P(Y ≥ p) = d0[1− FY (p)], where FX and FY are the c.d.f.s of continuous random variables X

and Y , respectively. We will use F̄X and F̄Y to denote the complements of FX and FY , respectively.

For any unit of matched supply with an opportunity cost c, the supplier earns a surplus w − c. Let

fX|X≤w denote the probability density function (p.d.f.) of X conditioned on the event {X ≤ w}, and

fY |Y≥p denote the p.d.f. of Y conditioned {Y ≥ p}. The likelihood of a matched supply unit having

opportunity cost c is fX|X≤w(c) = fX(c)/FX(w). Similarly, the likelihood of a matched demand unit

having valuation v is fY |Y≥p(v) = fY (v)/[1− FY (p)]. Thus the total surplus on the supply side is

Us(p, w) = [s(w) ∧ d(p)]

∫ w

0

(w − c)fX(c)

FX(w)
dc = [s(w) ∧ d(p)]

∫ w
0
FX(c)dc

FX(w)
,

where the last equation is due to integration by parts. Similarly, the total surplus on the demand side is

Ud(p, w) = [s(w) ∧ d(p)]

∫ v̄

p

(v − p)fY (v)

1− FY (p)
dv = [s(w) ∧ d(p)]

∫ v̄
p
F̄Y (v)dv

F̄Y (p)
.

For on-demand matching platforms, it is often important to maintain good relationship with their

independent suppliers. For example, Uber call their drivers “partners.” Moreover, like revenue-sharing

contracts, the commission contract tends to align the platform’s incentive with that of the drivers plus

the platform. Thus, in the following we consider the platform’s incentive as maximizing the total surplus

on the supply side plus the platform’s profit, i.e.,

max
p,w

U(p, w) ≡Us(p, w) + (p− w)[s(w) ∧ d(p)]

=[s(w) ∧ d(p)]

ñ
p− w +

∫ w
0
FX(c)dc

FX(w)

ô
= [s(w) ∧ d(p)]

ñ
p− w +

∫ w
0
s(c)dc

s(w)

ô
.

Let (p̃, w̃) be the optimal solution to the above problem. The following result characterizes (p̃, w̃) by

reducing the problem to a one-dimensional optimization problem, analogous to Theorem 2.2.
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Proposition 2.4 (Maximization of Supplier Surplus and Platform Profit) The optimal price

p̃ and wage w̃ that maximize the supply side surplus plus the platform’s profit are given by p̃ = d−1(z̃) and

w̃ = s−1(z̃), respectively, where z̃ is the optimal solution to maxz≥0

{
z[d−1(z)− s−1(z)] +

∫ s−1(z)

0
s(c)dc

}
,

and d−1(z), s−1(z) are defined in Theorem 2.2.

Proof of Proposition 2.4. For simplicity of exposure, we assume without loss of generality that the

functions are differentiable in all subsequent proofs. If not, we could replace derivatives with differences.

To maximize U(p, w), note that the function h(w) ≡ w − [
∫ w

0
s(c)dc]/s(w) is increasing in w. To

see this, h′(w) = 1 − [s(w)2 − s′(w)
∫ w

0
s(c)dc]/s(w)2 = s′(w)

∫ w
0
s(c)dc/s(w)2 ≥ 0. Substitute p with

p = h(w) + m, then U(p, w) = U(h(w) + m,w) = m[s(w) ∧ d(h(w) + m)]. Given m ≥ 0, the optimal

w, denoted by w̃(m), should equate s(w) and d(h(w) + m). Let s(w̃(m)) = d(h(w̃(m)) + m) = z.

Then, w̃(m) = s−1(z) and m = d−1(z) − h(w̃(m)) = d−1(z) − h(s−1(z)). As m varies from 0 to ∞, z

ranges from z̄ to 0, where z̄ is the solution to d−1(z) = h(s−1(z)). Note that this range of z coincides

with the range of z that keeps m = d−1(z)− h(s−1(z)) nonnegative. The maximization of U(p, w) can

then be rewritten as maxz≥0 z[d
−1(z) − h(s−1(z))] = maxz≥0

{
z[d−1(z)− s−1(z)] +

∫ s−1(z)

0
s(c)dc

}
. If

z̃ ∈ arg maxz≥0 z[d
−1(z)− h(s−1(z))], we have w̃ = s−1(z̃) and p̃ = d−1(z̃). �

To incentivize a self-interested platform to use the price p̃ and wage w̃, a side payment from the

suppliers to the platform plus a wage-price schedule can be used to coordinate the suppliers and the

platform.

Now we consider maximizing the aggregate social welfare W (p, w), which is the sum of the platform’s

profit and the total surplus of both sides of the market:

max
p,w

W (p, w) ≡(p− w)[s(w) ∧ d(p)] + Us(p, w) + Ud(p, w)

=[s(w) ∧ d(p)]

[
p− w +

∫ w
0
FX(c)dc

FX(w)
+

∫ v̄
p
F̄Y (v)dv

F̄Y (p)

]

=[s(w) ∧ d(p)]

[
p− w +

∫ w
0
s(c)dc

s(w)
+

∫ v̄
p
d(v)dv

d(p)

]
.

Let (p̂, ŵ) be the optimal solution to the above problem. Like before, the problem can be reduced to

a one-dimensional optimization problem.

Proposition 2.5 (Maximization of Social Welfare) The optimal price p̂ and wage ŵ that max-

imize the social welfare are given by p̂ = d−1(ẑ) and ŵ = s−1(ẑ), respectively, where ẑ is the optimal

solution to maxz

{
z[d−1(z)− s−1(z)] +

∫ v̄
d−1(z)

d(v)dv +
∫ s−1(z)

0
s(c)dc

}
, and d−1(z), s−1(z) are defined

in Theorem 2.2.

Proof of Proposition 2.5. To maximize W (p, w), note that g(p) = p+
∫ v̄
p
d(v)dv/d(p) is increasing in p

because g′(p) = −d′(p)
∫ v̄
p
d(v)dv/d(p)2 ≥ 0. Then, we know that g(p) ranges from g(0) =

∫ v̄
0
d(v)dv/d(0)

to ∞. Since limw→0 s(w)/s′(w) = 0, we have h(0) = 0. Since h(w) ∈ [0, h(∞)], ` ≡ g(p) − h(w) ∈

[g(0) − h(∞),∞) and p = g−1(` + h(w)). For a given ` ≥ 0, the social welfare becomes W (p, w) =
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`[d(g−1(`+h(w)))∧ s(w)]. If d(g−1(`+h(∞))) > s(∞), then d(g−1(`+h(w))) > s(w) for all w, because

d(g−1(` + h(w))) − s(w) is decreasing in w. Thus W (p, w) = `s(w), which can be further improved if

we increase `. As a result, to achieve the optimality, we consider ` such that d(g−1(`+ h(∞))) ≤ s(∞),

which implies the existence of ŵ(`) such that d(g−1(` + h(ŵ(`)))) = s(ŵ(`)). Clearly, ŵ(`) maximizes

the social welfare for given `. Let z = d(g−1(` + h(ŵ(`)))) = s(ŵ(`)) and we get ŵ(`) = s−1(z) and

` = g(d−1(z)) − h(s−1(z)) = d−1(z) − s−1(z) + z−1[
∫ v̄
d−1(z)

d(v)dv +
∫ s−1(z)

0
s(c)dc]. Thus, to maximize

the social welfare W (p, w), we first solve maxz

{
z[d−1(z)− s−1(z)] +

∫ v̄
d−1(z)

d(v)dv +
∫ s−1(z)

0
s(c)dc

}
.

Denote the optimal solution by ẑ. Then, ŵ = s−1(ẑ) and p̂ = d−1(ẑ). �

Analogously, a coordination contract in the form of side payments from both suppliers and customers

to the platform plus a price-wage schedule can be used to induce a self-interested platform to achieve

the optimal social welfare.

Having characterized the optimal solutions to the three maximization problems, we are now ready

to compare the optimal prices, wages and various performance measures under different objectives.

Theorem 2.5 (Comparison) Compare the three problems with different objectives: the problem of

maximizing the platform’s profit (denoted by ∗), maximizing the platform’s profit and supplier surplus

(denoted by )̃ and maximizing the social welfare (denoted by )̂:

(a) (Price) p∗ ≥ p̃ ≥ p̂.

(b) (Wage) w∗ ≤ w̃ ≤ ŵ.

(c) (Volume) z∗ ≤ z̃ ≤ ẑ.

(d) (Platform’s Profit) π(p∗, w∗) ≥ π(p̃, w̃) ≥ π(p̂, ŵ).

(e) (Demand Surplus) Ud(p∗, w∗) ≤ Ud(p̃, w̃) ≤ Ud(p̂, ŵ).

(f) (Supplier Surplus) Us(p∗, w∗) ≤ Us(p̃, w̃) ≤ Us(p̂, ŵ).

(g) (Social Welfare) W (p∗, w∗) ≤W (p̃, w̃) ≤W (p̂, ŵ).

Proof of Theorem 2.5. (a)-(c) The results follow from Theorem 2.2 and Proposition 2.5. In particular,

since (d/dz)
[∫ s−1(z)

0
s(c)dc

]
= [s−1(z)]′z ≥ 0, we have z̃ ≥ z∗, which implies that w̃ = s−1(z̃) ≥

s−1(z∗) = w∗ and p̃ = d−1(z̃) ≤ d−1(z∗) = p∗.

Because

(d/dz)

[∫ v̄

d−1(z)

d(v)dv +

∫ s−1(z)

0

s(c)dc

]
= −z[d−1(z)]′ + z[s−1(z)]′ ≥ z[s−1(z)]′

=(d/dz)

[∫ s−1(z)

0

s(c)dc

]
,

where the inequality is due to that d−1(z) is a decreasing function, we have ẑ ≥ z̃. This implies that

p̂ ≤ p̃ and ŵ ≥ w̃.
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(d) ẑ
[
d−1(ẑ)− s−1(ẑ)

]
+
∫ s−1(ẑ)

0
s(c)dc = U(p̂, ŵ) ≤ U(p̃, w̃) = z̃

[
d−1(z̃)− s−1(z̃)

]
+
∫ s−1(z̃)

0
s(c)dc,

where the inequality is due to the fact that z̃ maximizes the platform’s profit plus supplier surplus.

It follows that π(p̂, ŵ) = ẑ
[
d−1(ẑ)− s−1(ẑ)

]
≤ z̃

[
d−1(z̃)− s−1(z̃)

]
+
∫ s−1(z̃)

0
s(c)dc −

∫ s−1(ẑ)

0
s(c)dc ≤

z̃
[
d−1(z̃)− s−1(z̃)

]
= π(p̃, w̃), where the latter inequality is due to that z̃ ≤ ẑ and that s−1(z) is

increasing in z. Moreover, by definition, π(p̃, w̃) ≤ π(p∗, w∗).

(e)-(f) Given the total matched supply and demand equal to z, the supply side surplus is equal to∫ s−1(z)

0
s(c)dc and the demand side surplus is equal to

∫ v̄
d−1(z)

d(v)dv. Since z∗ ≤ z̃ ≤ ẑ from part (c),

we have the desired results by noting that s−1(z) is an increasing function and d−1(z) is a decreasing

function.

(g) By definition, W (p̃, w̃) ≤W (p̂, ŵ). Moreover,

W (p∗, w∗) = U(p∗, w∗) + Ud(p∗, w∗) ≤ U(p̃, w̃) + Ud(p∗, w∗) ≤ U(p̃, w̃) + Ud(p̃, w̃) = W (p̃, w̃),

where the first inequality holds because z̃ maximizes platform’s profit plus supplier surplus, and the

second inequality is due to part (e). �

Theorem 2.5 shows that a profit maximizing platform would set the highest price and the lowest

wage. If the platform considers not only its own profit but also the surplus from independent suppliers,

the platform would increase the wage paid out to the suppliers which in turn leads to more suppliers

willing to provide the goods or services. To also utilize those additional suppliers, the platform has to

lower the price charged to customers. If the platform further takes into account the consumer surplus

to maximize the social welfare, the platform would further lower the price charged to customers and as

more customers arrive to the market, the platform would further increase the wage paid out to suppliers.

That is, with supplier surplus taken into consideration in setting price and wage, the platform would

squeeze its own margin and as a result, the matching quantity increases. Interestingly, both supply and

demand side benefit even though demand surplus is not in the platform’s objective. With all parties’

surplus taken into account, the platform would further squeeze its own margin and reaches the largest

the matching quantity and the highest supply and demand surplus, whereas its own profit is the lowest.

Analogous results to maximizing the platform’s profit plus supplier surplus can be obtained for the

case where the platform’s profit plus demand surplus is maximized.

Proposition 2.6 Let the problem of maximizing the platform’s profit plus demand surplus denote by .̆

All of the results in Theorem 2.5 hold with ˜ replaced by .̆

Proof of Proposition 2.6. Let z̆ be the optimal matching quantity that maximizes the platform’s

profit plus demand side surplus. We show that z∗ ≤ z̆ ≤ ẑ. The other parts follow similarly to the proof

of Theorem 2.5 and are hence omitted.

Consider Ũ(p, w) = Ud(p, w) + (p − w)[s(w) ∧ d(p)] = [s(w) ∧ d(p)]
î
p− w +

∫ v̄
p
F̄Y (v)dv/F̄Y (p)

ó
=

[s(w) ∧ d(p)]
î
p− w +

∫ v̄
p
d(v)dv/d(p)

ó
.
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Define w̃ ≡ −w and p̃ ≡ −p. Define s̃(w̃) ≡ s(−w̃) and d̃(p̃) ≡ d(−p̃).

Then, Ũ(p, w) can be rewritten as

Ũ(p, w) = [s̃(w̃) ∧ d̃(p̃)]

ñ
w̃ − p̃+

∫ p̃

−ṽ
d̃(v)dv/d̃(p̃)

ô
.

Let h̃(p̃) = p̃ −
∫ p̃
−ṽ d̃(v)dv/d̃(p̃). Then, h̃′(p̃) = d̃′(p̃)

∫ p̃
−ṽ d̃(v)dv/d̃(p̃) ≥ 0. Let w̃ = m + h̃(p̃).

To maximize Ũ(p, w) = m[d̃(p̃) ∧ s̃(m + h̃(p̃))], we must equate d̃(p̃) and s̃(m + h̃(p̃)). Let d̃(p̃) =

s̃(m + h̃(p̃)) = z. It follows that p̃ = d̃−1(z) and w̃ = m + h̃(d̃−1(z)) = s̃−1(z). As a result, m =

s̃−1(z)− h̃(d̃−1(z)) = s̃−1(z)− d̃−1(z) + z−1
∫ d̃−1(z)

−v̄ d̃(v)dv.

To maximize U(p, w), it is equivalent to solve

max
z≥0

{
z
î
s̃−1(z)− d̃−1(z)

ó
+

∫ d̃−1(z)

−v̄
d̃(v)dv

}
= max

z≥0

®
z
[
d−1(z)− s−1(z)

]
+

∫ v̄

d−1(z)

d(v)dv

´
.

Let z̆ be the minimum maximizer to the above problem.

To maximize its own profit, the platform solves maxz≥0 z[d
−1(z)−s−1(z)] = maxz≥0 z

î
s̃−1(z)− d̃−1(z)

ó
.

It follows that z̃ ≥ z∗.

To maximize social welfare, one solves maxz≥0

{
z
[
d−1(z)− s−1(z)

]
+
∫ v̄
d−1(z)

d(v)dv +
∫ s−1(z)

0
s(c)dc

}
.

Since (d/dz)
∫ v̄
d−1(z)

d(v)dv ≥ 0 and (d/dz)
∫ s−1(z)

0
s(c)dc ≥ 0, we have z∗ ≤ z̆ ≤ ẑ. �

2.6.2 Piecewise Commission Rate Contracts

Here we extend the flat, across-the-board commission contract to piecewise commission contracts.

Definition 2.3 ((Price-Based) Piecewise Contract) A contract w = f(p) is called a piecewise

commission contract with N + 1 pieces if there exist thresholds t1 < · · · < tN and constant rates

γ1, . . . , γN+1 ∈ [0, 1] such that w = f(p) = γip for ti ≤ p < ti+1 (i = 0, . . . , N), with the conven-

tion t0 ≡ 0 and tN+1 ≡ ∞.

There always exists a piecewise commission contract that has K pieces (K is the number of scenarios)

and is ε-optimal for any ε > 0. This is because in the proof of Proposition 2.2, the constructed ε-

optimal contract is in fact a piecewise contract. However, a K-piece commission contract would become

impractical if the number of scenarios, K, is very large. Therefore, a reasonable number of pieces is

desired to balance the complexity and performance of a contract. For instance, the fixed commission

contract is effectively a 1-piece commission contract.

To study the piecewise commission contract, we consider the following commission structure that

clusters the scenarios with a similar ratio γ∗k = w∗k/p
∗
k.

Definition 2.4 (Ratio-Clustered Commission Structure) A ratio-clustered commission structure

with J pieces and thresholds γ̄ = θ1 ≥ · · · ≥ θJ ≥ γ ≥ θJ+1 is a commission structure that enforces

w = f(p) = θjp for any scenario k ∈ Kj ≡ {k ∈ K | θj ≥ γ∗k ≥ θj+1}.
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The following result investigates the number of clusters that is needed by a ratio-clustered commission

structure to guarantee a near-optimality ratio δ.

Proposition 2.7 For any δ ∈ (0, 1), the ratio-clustered commission structure with J = dlog( 1−γ̄
1−γ )/ log δe

pieces and thresholds γ̄ = θ1 ≥ · · · ≥ θJ ≥ γ ≥ θJ+1 such that θj+1 = 1−δ−1(1−θj) (for all j = 1, . . . , J)

achieves the near-optimality ratio δ.

Proof of Proposition 2.7. By definition, θj ≥ γ∗k for any k ∈ Kj . It follows from the proof of Theorem

2.3 that P ∗k (θj)/πk(p∗k, w
∗
k) ≥ (1 − θj)/(1 − γ∗k) ≥ (1 − θj)/(1 − θj+1). Under the condition θj+1 =

1− δ−1(1− θj) (for all j), we have 1− θj+1 = δ−1(1− θj), implying that P ∗k (θj)/πk(p∗k, w
∗
k) ≥ δ for all

k ∈ K. Furthermore,

1− θJ+1 = δ−J(1− θ1) = δ−J(1− γ̄) = e−J log δ(1− γ̄) = e−d
log[(1−γ̄)(1−γ)−1]

log δ e log δ(1− γ̄) ≥ 1− γ,

which implies that θJ+1 ≤ γ. Thus, the specified contract with J = dlog( 1−γ̄
1−γ )/ log δe thresholds will

achieve the pre-specified near-optimality ratio δ. �

We illustrate Proposition 2.7 by the following example.

Example 2.1 Consider the case with γ̄ = 0.8 and γ = 0.2. By Proposition 2.7, to achieve the near-

optimality ratio δ = 0.5, J = log(0.2/0.8)/ log(0.5) = 2 pieces are needed. If γ̄ = 0.9 and γ = 0.1, to

achieve the same δ = 0.5, J = dlog(0.1/0.9)/ log(0.5)e = 4 pieces are needed. �

Given the optimal wage-to-price ratios γi1 ≥ γi2 ≥ · · · ≥ γiN , if it happens that p∗i1 ≤ · · · ≤ p∗iN or

p∗i1 ≥ · · · ≥ p
∗
iN

(i.e., p∗k is monotone in γ∗k), the following proposition finds a piecewise fixed commission

rate contract that achieves the near-optimality ratio δ.

Proposition 2.8 Consider a ratio-clustered commission structure with J pieces and thresholds γ̄ = θ1 ≥

· · · ≥ θJ ≥ γ ≥ θJ+1 such that θj+1 = 1 − δ−1(1 − θj) for all j. If p∗k is monotone in γ∗k, there exist

price thresholds t1 ≥ · · · ≥ tJ+1 such that the piecewise fixed commission rate contract f(p) = θjp for

tj+1 ≤ p < tj achieves the near-optimality ratio δ.

Proof of Proposition 2.8. Suppose without loss of generality that γ∗1 ≥ γ∗2 ≥ · · · ≥ γ∗K and

θ1 ≥ γ∗1 ≥ γ∗2 ≥ · · · ≥ γ∗i1 ≥ θ2,

θ2 ≥ γ∗i1+1 ≥ γ∗i1+2 ≥ · · · ≥ γ∗i2 ≥ θ3,

. . . ,

θJ ≥ γ∗iJ−1+1 ≥ · · · ≥ γ∗iJ ≥ θJ+1.

We consider the case with p∗1 ≥ p∗2 ≥ · · · ≥ p∗K (the case with p∗1 ≤ p∗2 ≤ · · · ≤ p∗K can be dealt with

similarly). We can find price thresholds t1 ≥ · · · ≥ tJ such that

t1 > p∗1 ≥ p∗2 ≥ · · · ≥ p∗i1 ≥ t2,
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t2 > p∗i1+1 ≥ p∗i1+2 ≥ · · · ≥ p∗i2 ≥ t3,

. . . ,

tJ > p∗iJ−1+1 ≥ · · · ≥ p∗iJ ≥ tJ+1.

In the above, we implicitly assumed that p∗i1 > p∗i1+1, p∗i2 > p∗i2+1, . . ., and p∗iJ−1
> p∗iJ−1+1. If this is

not the case, say, p∗i1 = p∗i1+1, we can replace p∗i1+1 with p∗i1+1 + ε; the resulting strategy will lead to an

arbitrarily close performance as ε→ 0.

Let us use the piecewise fixed commission rate contract w = f(p) = θjp for p ∈ [tj+1, tj ]. In any

Scenario k with p∗k ∈ [tj+1, tj) (p∗k must belong to one of the intervals in {[tj+1, tj)}j=1,...,J), subject to

the contract f , we have θj ≥ γ∗k ≥ θj+1, and the optimal profit is

Pk(f) = max
p

[p− f(p)] min {sk(f(p)), dk(p)}

≥ max
tj+1≤p<tj

[p− f(p)] min {sk(f(p)), dk(p)}

= max
tj+1≤p≤tj

(1− θj)pmin {sk(θjp), dk(p)}

≥(1− θj)p∗k min {sk(θjp
∗
k), dk(p∗k)}

≥(1− θj)p∗k min {sk(γ∗kp
∗
k), dk(p∗k)}

=
1− θj
1− γ∗k

(1− γ∗k)p∗k min {sk(γ∗kp
∗
k), dk(p∗k)}

=
1− θj
1− γ∗k

πk(p∗k, w
∗
k)

≥ 1− θj
1− θj+1

πk(p∗k, w
∗
k)

=δπk(p∗k, w
∗
k),

where the last equality is due to the condition θj+1 = 1− δ−1(1− θj). In any Scenario k, the piecewise

contract f achieves at least a fraction δ of the optimal profit in the benchmark. Thus, overall, the

piecewise contract achieves at least the fraction δ of the optimal expected profit in the benchmark. �

Below we present a special case in which p∗k is indeed monotone in γ∗k .

Example 2.2 (When p∗k Is Monotone in γ∗k) Suppose that both supply and demand are linear func-

tions in every Scenario k. Let sk(w) = αkw and dk(p) = dk0 − βkp. Then, in Scenario k, p∗k =

dk0{[2(αk + βk)]−1 + (2βk)−1}, w∗k = dk0[2(αk + βk)]−1 and γ∗k = w∗k/p
∗
k = βk/(αk + 2βk). γ∗k is mono-

tone in p∗k, for example, when dk0 is increasing in k, both αk and βk are decreasing in k, and αk/βk is

monotone in k. This may happen when, for example, in the ride-hailing problem, the weather condition

worsens as the index k increases, so that the base demand dk0 becomes larger, and both the customers

and suppliers become less sensitive to price (due to increased valuations and costs). Moreover, one of

the sensitivity parameters αk and βk is more responsive to the change of k than the other. �
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If p∗k is not monotone in γ∗k , we can still construct a price-based piecewise commission contract that

achieves the same near-optimality ratio δ. However, the former is likely to have more pieces than the

latter. For example, consider K = 6, θ1 ≥ γ∗1 ≥ γ∗2 ≥ γ∗3 ≥ γ∗4 ≥ θ2 ≥ γ∗5 ≥ γ∗6 ≥ θ3 and p∗1 ≥ p∗2 ≥ p∗5 ≥

p∗6 ≥ p∗3 ≥ p∗4. We can find t1, t2, t3, t4 such that t1 ≥ p∗1 ≥ p∗2 ≥ t2 ≥ p∗5 ≥ p∗6 ≥ t3 ≥ p∗3 ≥ p∗4 ≥ t4. We

can then use the piecewise contract f(p) = θ1p for t2 ≤ p < t1 and for t4 ≤ p < t3, and f(p) = θ2p for

t3 ≤ p < t2. Following the same analysis as in the proof of Proposition 2.8, we can conclude that the

piecewise contract achieves the near-optimality ratio δ if θj+1 = 1− δ−1(1− θj) for j = 1, 2.

2.6.3 Price-Setting Suppliers

We now consider the case in which prices are set by suppliers rather than by the platform. Suppose

that the platform offers the commission contract w = γp to the suppliers with the commission rate

1− γ determined. Then, each supplier simultaneously sets his/her own price, followed by all customers

simultaneously make a purchase. As earlier, we consider continua of suppliers and customers, with the

c.d.f.s of their opportunity cost and valuation denoted by FX and FY , respectively, which are common

knowledge. Individual supplier cost and customer valuation are private information. With possibly

multiple prices, since the product is homogeneous, customers always prefer a lower price and their

search is costless. If there is an imbalance between supply and demand who are willing to transact, some

pre-announced rationing rule governs.

Again, we look at one individual scenario first, and so we omit the index k for the time being.

Proposition 2.9 (Decentralized Market) Consider an arbitrary scenario. Given the commission

γ, let p̄(γ) be the solution to s(γp) = d(p). There exists a symmetric Bayesian price equilibrium p∗(c)

for suppliers depending on their individual supply cost c:

(i) p∗(c) = p̄(γ) for c ≤ γp̄(γ);

(ii) p∗(c) = c for c > γp̄(γ).

Moreover, in any equilibrium, all the suppliers that are able to sell will charge the price p̄(γ).

Proof of Proposition 2.9. Suppose that the suppliers price according to (i) and (ii). The condition

s(γp̄(γ)) = d(p̄(γ)) ensures that the suppliers with cost c ∈ [0, γp̄(γ)] are completely matched with

the demand with valuation v ∈ [p̄(γ),∞). Any demand with v < p̄(γ) or supply with c > γp̄(γ) are

unmatched. We show that under the price schedule p∗(c), no supplier has incentive to deviate.

Any supplier with c ∈ [0, γp̄(γ)] is matched for sure, thus has no incentive to lower the price. If the

supplier increase the price to p′ > p̄(γ), he would be undercut by suppliers with c ∈ (p̄(γ), p′) and thus

left unmatched. Therefore, the supplier has no incentive to increase price either.

For a supplier with c > γp̄(γ), his/her surplus is zero. Further increasing the price would still lead to

zero surplus since the supplier remains unmatched, and lowering the price below p∗(c) = c would lead

to a nonpositive surplus.
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Consequently, no supplier has an incentive to deviate from p∗(c).

Next, we show that in any price equilibrium, all the matched suppliers will set the same price. To

see this, first note that if a supplier with price p can sell, any supplier with price p′ < p can also sell.

However, for any supplier charging p′, by increasing the price to p− ε, he will still sell and earn a higher

surplus.

It remains to show that the price p for all suppliers that sell must be p̄(γ). If p < p̄(γ), there are

more customers willing to buy than suppliers willing to sell. Then, any supplier can increasing his/her

price by ε and still sells. This leads to a higher surplus. If p > p̄(γ), there are fewer customers willing

to buy than suppliers willing to sell. Thus, the suppliers who charges p sells with a probability less than

1. However, if one of them decreases the price by ε, then his/her probability of selling becomes 1, which

increases his/her surplus. As a result, the equilibrium price must be p̄(γ). �

Proposition 2.9 says that in a decentralized market, in equilibrium, the market price is a market

clearing price such that the total mass of suppliers who are willing to sell is equal to the total mass of

customers who are willing to purchase and no rationing is needed. In contrast, in the centralized market

where the platform sets the price, by Theorem 2.1, for a given γ, the optimal centralized price is p∗(γ) =

max{p̄(γ), po}, where po ∈ arg maxp≥0(p−γp)d(p) = arg maxp≥0(1−γ)pd(p) = arg maxp≥0 pd(p). If the

self-interested platform sets the optimal price as po, then there are more suppliers who are willing to

sell than customers; in a decentralized market, because there is potentially more supply than demand

at the price po, individual suppliers will drive down the market price and more suppliers and customers

will be matched. In this case, we see that the decentralized market generates higher social welfare than

the situation where a self-interested centralized platform sets the price.

The platform’s problem of maximizing profit in a given scenario is as follows:

max (1− γ)p̄(γ)d(p̄(γ))

s.t. 0 ≤ γ ≤ 1.

The following result shows that the equilibrium price and wage coincide with the optimal price and

wage when the platform sets both of them to maximize profit.

Proposition 2.10 The optimal fixed commission that maximizes the platform’s profit is given by γ∗ =

s−1(z∗)/d−1(z∗) and the equilibrium price corresponding to the commission γ∗ is p∗ = d−1(z∗), where

z∗ is the optimal solution to maxz z[d
−1(z)− s−1(z)].

Proof of Proposition 2.10. For any supplier with c ∈ [0, γp̄(γ)], his surplus is γp̄(γ)− c.

For any customer with v ≥ p̄(γ), her surplus is v − p̄(γ). The total surplus on the demand side is

d0

∫∞
p̄(γ)

[y − p̄(γ)]fY (y)dy = d0

∫∞
p̄(γ)

F̄Y (y)dy =
∫∞
p̄(γ)

d(y)dy.

Let z = d(p̄(γ)). The equality d(p̄(γ)) = s(γp̄(γ)) implies that z = s(γd−1(z)), or equivalently,

γ = s−1(z)/d−1(z). Given that s(w) is increasing and d(p) is decreasing, γ is increasing in z. The
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constraint 0 ≤ γ ≤ 1 is equivalent to 0 ≤ z ≤ z̄, where z̄ is determined by the equation d−1(z̄) = s−1(z̄).

Substituting p̄(γ) with d−1(z) and γ with s−1(z)/d−1(z), the objective function for maximizing profit

becomes z[d−1(z) − s−1(z)]. Thus, the maximizing profit is equivalent to maxz≥0 z[d
−1(z) − s−1(z)].

Note that z ≤ z̄ will be naturally satisfied because the profit becomes negative otherwise. Let z∗ be

optimal solution. Then γ∗ = s−1(z∗)/d−1(z∗). �

With a given commission, the outcome from the decentralized market could in general be different

from the situation where a self-interested centralized platform sets the price, leading to a revenue loss

for the platform. Proposition 2.10 says that if there is only one scenario, however, the platform can

perfectly recover the profit-maximizing outcome by pre-setting the commission.

When there are multiple scenarios, the self-interested platform can still tilt the market more to-

wards profit-maximization by optimizing the commission. In particular, with price-setting suppliers, the

platform faces the problem maxγ∈[0,1](1− γ)
∑
k∈K ρkp̄k(γ)d(p̄k(γ)) to maximize its expected profit. In

contrast, with price-taking suppliers, the platform solves

max
γ∈[0,1]

(1− γ)
∑
k∈K

ρk max
p≥0

pmin{sk(γp), dk(p)}.

In general, for a given γ, p̄(γ) does not maximize pmin{sk(γp), dk(p)}. Thus, the platform makes more

profit if it sets the price instead of the suppliers for any given commission contract w = γp. Our numerical

analysis in the next section shows that the platform’s profit achieved by the optimal commission contract

and the corresponding supplier and customer surplus for the model with price-setting suppliers are on

average very close to those for the model with price-taking suppliers.

2.7 Numerical Experiments

Maximizing Platform’s Profit plus Supply Side Surplus. Consider the problem of maximizing

the platform’s profit plus suppliers’ surplus. Let the total number of scenarios be fixed at K = 48. We

generate 400 instances with normally distributed supplier cost and customer valuation as in Section 2.5.3,

and compare the optimal expected value of the platform’s profit plus suppliers’ surplus (by choosing the

optimal price and wage in every scenario) with the maximum expected value of the platform’s profit

plus suppliers’ surplus among all fixed commission rate contracts. Table 2.6 shows the statistics on the

fraction of optimality achieved.

Table 2.6: Statistics of the Performance of the Fixed Commission Contract for Maximizing Platform
Profit plus Suppliers’ Surplus: Normal Distributions

Maximum Minimum Mean Median Standard Deviation

98.10% 88.98% 93.32% 93.43% 1.30%

Next, we generate 400 random instances with lognormally distributed supplier cost and customer valu-
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ation. Following the notation in Subsections 2.5.1 and 2.5.3, the parameters are drawn as follows: sk0 ∼

U [0, 1], µs,k ∼ U [log(10), log(20)], σs,k ∼ U [0.09975, 0.8326], dk0 ∼ U [0, 1], µd,k ∼ U [log(10), log(20)],

σd,k ∼ U [0.09975, 0.8326]. Table 2.7 shows the statistics on the fraction of optimality achieved by the

best fixed commission rate contract.

Table 2.7: Statistics of the Performance of the Fixed Commission Contract: Lognormal Distributions

Maximum Minimum Mean Median Standard Deviation

96.87% 82.46% 93.39% 93.60% 1.80%

Tables 2.6 and 2.7 shows that the fixed commission rate contract is able to achieve the most of the

optimal surplus for the platform and the suppliers combined.

Maximizing Social Welfare. We now consider the problem of maximizing the total social welfare,

and compare the optimal expected social welfare with the expected social welfare achieved by the best

fixed commission rate contract.

We first generate 400 random instances with normally distributed supplier cost and customer valua-

tion (in the same way as we do for the maximization of the platform profit plus suppliers’ surplus), and

present the statistics of the fraction of achieved optimality in Table 2.8.

Table 2.8: Statistics of the Performance of the Fixed Commission Contract: Normal Distributions

Maximum Minimum Mean Median Standard Deviation

94.33% 37.58% 72.05% 72.62% 9.93%

We then generate 400 random instances with lognormally distributed supplier cost and customer

valuation (again in the same way as we do for the maximization of platform profit plus suppliers’

surplus). The statistics are shown in Table 2.9.

Table 2.9: Statistics of the Performance of the Fixed Commission Contract: Lognormal Distributions

Maximum Minimum Mean Median Standard Deviation

94.14% 37.37% 72.47% 72.74% 9.45%

Tables 2.8 and 2.9 show that, for maximizing social welfare, the fixed commission rate contract

can lead to less desirable performances (at the least, 37.58% for normal distributions and 37.37% for

lognormal distributions). Nevertheless, it still achieves a decent portion of optimality (on average, 72.05%

for normal distributions and 72.74% for lognormal distributions).

Price-Setting Suppliers. Consider K = 10 scenarios. Both supplier cost and customer valuation

follow conditional normal distributions as in Subsection 2.5.1. The parameters are shown in Table 2.10.

We compare the platform’s profit under the profit-maximizing fixed commission contract for both the

pricing-taking mode and price setting model. The optimal ratios γ∗s and γ∗t coincide, both equal to 0.605.

The profit of the price-taking model under the optimal commission is 0.7117, and the optimal profit of
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the price-setting model is 0.7089. While the latter is slightly lower, it achieves 99.6% of the former.

The total combined surplus of suppliers and the platform for the price-setting model under the

commission contract w = γ∗sp is 0.9446, slightly lower than the price-taking model with that equal to

0.9528 under the contract w = γ∗t p.

The total social welfare for the price-setting model under the commission contract w = γ∗sp is 1.1567,

slightly higher than the price-taking model with that equal to 1.1556 under the contract w = γ∗t p.

Table 2.10: Parameters

Scenario 1 2 3 4 5 6 7 8 9 10

sk0 0.9124 0.1886 0.7833 0.6852 0.8668 0.8783 0.3787 0.1458 0.8765 0.5258

µs,k 10.11 27.05 18.55 29.37 12.62 15.97 27.77 14.97 19.62 29.04

σs,k 3.68 10.46 3.44 8.50 2.63 4.95 5.20 2.11 2.98 9.46

dk0 0.0462 0.2002 0.8590 0.8311 0.8291 0.3742 0.5179 0.8450 0.5368 0.9242

µd,k 14.53 25.95 15.51 11.58 11.68 27.80 13.04 28.75 17.90 28.22

σd,k 2.29 6.71 3.93 1.69 4.58 5.21 4.83 3.50 2.86 3.72

ρk 0.0442 0.1656 0.0906 0.0595 0.0836 0.0427 0.1314 0.1318 0.1493 0.1013

We further generate 400 instances with normally distributed supplier cost and customer valuation

where the parameters are drawn in the same way as in Subsection 2.5.3. Surprisingly, the optimal

platform profit, platform profit plus suppliers’ surplus, and social welfare achieved by the optimal com-

mission contract (that maximizes the platform’s profit) under the price-setting model is very close to

that under the price-taking model.

Let P ∗s , Us and Ws denote the platform’s profit, platform’s profit plus supplier surplus and social

welfare, respectively, under the optimal profit-maximizing fixed commission contract for the price-setting

model. Likewise, let P ∗t , Ut and Wt denote the corresponding quantities for the price-taking model. We

show the statistics on the ratios P ∗s /P
∗
t , Us/Ut and Ws/Wt in Table 2.11.

We further generate another 400 instances with lognormally distributed supplier cost and customer

valuation (again, the parameters of the lognormal distributions are drawn in the same way as in Subsec-

tion 2.5.3), and report the statistics on the ratios P ∗s /P
∗
t , Us/Ut and Ws/Wt in Table 2.12. The optimal

profits achieved by the price-setting model and the price-taking model are again very close. While the

ratios Us/Ut and Ws/Wt can be as low as 65.53% and 68.84%, respectively, on average, the price-setting

model achieves 93.04% and 96.49% of Ut and Wt under the price-taking model.

Table 2.11: Statistics of the Ratios P ∗s /P
∗
t , Us/Ut and Ws/Wt: Normal Distributions

Maximum Minimum Mean Median Standard Deviation

P ∗s /P
∗
t 100% 96.88% 96.68% 99.83% 0.42%

Us/Ut 100.02% 88.83% 98.48% 99.03% 1.74%

Ws/Wt 100.58% 95.46% 99.60% 100% 0.74%
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Table 2.12: Statistics of the Ratios P ∗s /P
∗
t , Us/Ut and Ws/Wt: Lognormal Distributions

Maximum Minimum Mean Median Standard Deviation

P ∗s /P
∗
t 100% 90.06% 98.69% 99.08% 1.42%

Us/Ut 100% 65.53% 93.04% 94.61% 6.27%

Ws/Wt 107.08% 68.84% 96.49% 97.90% 5.53%

2.8 Conclusion

Matching supply with demand is a core idea of operations management. In this chapter, we study

the pricing problem in regulating demand and crowdsourced supply simultaneously for an on-demand

matching platform. This problem can be viewed as performing revenue management on both sides of the

market. We show that the joint price and wage optimization problem with the transaction volume as the

minimum of supply and demand has a fundamental difference from the classic supply chain management

settings and the two-sided market problem in the economics literature. This observation might have

been lost if we had a more complicated formulation. With the most parsimonious model, our discovery

justifies the unique perspective of operations management in studying the two-sided pricing and matching

problem. Moreover, our work sheds light on the efficiency of the commonly adopted commission contract

by showing that it achieves a guaranteed portion of the platform’s optimal expected profit under full

flexibility of optimally choosing both wage and price for every possible market condition. The result has

similar flavor to the close-to-optimal performance of the long chain configuration studied in the process

flexibility literature.

Our paper has the following limitations, which we hope to address in future research. First, for

a given market condition, unmatched supply or demand is assumed to be lost. One may consider a

more realistic, multiple-period dynamic setting in which the platform sets price and wage over time and

unmatched supply and demand can be carried over from period to period. Second, for simplicity, we

ignore the spatial dimension that is important for a ride-hailing platform. Setting a low price in the

suburban area during the morning rush will increase the supply in the city after the rush. A future

work can introduce the spatial dimension into the joint price and wage optimization under supply and

demand uncertainty. Third, though our numerical experiments are comprehensive, they may differ from

the reality. It would be interesting to identify empirically the demand and supply curves and then test

our results numerically. Lastly, we ignore competition among platforms. In practice there can be more

than one platform competing for both supply and demand. It can be fruitful to study the performance

of the fixed commission contract under competition among on-demand matching platforms.
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Chapter 3

Dynamic Type Matching: The

General Framework

3.1 Introduction

Consider a firm that manages the process of matching supply with demand in a periodic-review fashion.

There are multiple types of demand and supply, with a reward rij generated by matching one unit of

type i demand and one unit of type j supply. At the beginning of each period, demand and supply of

various types arrive in random quantities. The firm’s problem is to decide how to match them and to

what extent, so as to maximize the total discounted rewards minus costs, given that unmatched demand

and supply will incur unit waiting and holding cost rates c and h, respectively, and will be carried over

to the next period with carry-over rates α ∈ [0, 1] and β ∈ [0, 1], respectively.

That is exactly the essence of the problem faced by many intermediaries who centrally manage

matchings in the sharing economy. Operations management deals with serveral processes including that

of matching supply with demand. There is a new form of such process that calls for active management—

a sharing economy with crowdsourced supply. For example, carpooling platforms such as iCarpool and

UberPool match a driver heading to a destination with several riders to the same destination (or in the

same direction). Amazon crowdsources inventories of an identical item from third-party merchants to

its warehouses, to fulfill online orders.1 A nonprofit organization, United Network for Organ Sharing

(UNOS), allocates donated organs to patients in need of transplantation. These popular business and

nonprofit sharing-economy models are based on what academics often call a two-sided market (Rochet

and Tirole 2006). In such a market, an information technology platform is developed and maintained by

an intermediary firm to make sharing-economy activities possible. Three parties are involved, namely, an

1Amazon calls that an “inventory commingling program.” A product ordered from Amazon or a third-party seller may
not have originated from the original seller. The program gives Amazon the flexibility to ship products on the basis of
their geographic proximity to customers, thus shortening delivery times and reducing shipping costs.
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intermediary firm, the demand side and the supply side. In this structure, the intermediary organization

matches demand and supply of heterogeneous types.

Other than dealing with heterogeneous types, the matching of demand and supply by an intermediary

in the sharing economy can be extremely difficult for at least two more reasons. First, there are time-

varying uncertainties on both the demand and supply sides, which may be out of the control of the

intermediary. Second, arrived but unmatched demand and supply may leave the market over time.

Economic theories use the tool of “price” to match demand with supply. While price does play an

important role in many marketplaces, especially at the strategic and tactical levels, day-to-day or minute-

to-minute operations often require more than price adjustment to achieve efficiency in practice. For

example, in ridesharing, though Uber is well-known for its “surge pricing,” the same rate applies to all

rides at the same time regardless of their origin and destination; in other words, the rate at any given time

is exogenous to geographic locations as “types” of riders and drivers. For another example, the allocation

of donated organs in the United States does not involve prices at all. Given that prices are exogenous2

or irrelevant, intervention at the operational level, by directly matching supply with demand of various

types, provides an efficient way for the intermediary organization to allocate the crowdsourced supply

across different types of demand. In summary, the intermediary has the task of matching exogenous

streams of demand and supply types to maximize total profit or social welfare, taking into account that

there will be time-dependent random arrivals of demand and supply in the future and that unmatched

demand and supply need to be compensated and may abandon.

In this chapter, we formulate the intermediary firm’s dynamic matching problem as a discrete-time

stochastic dynamic program and analyze it for the structural properties of optimal matching policies

and good heuristic policies. We obtain a set of distribution-free structural results provided that demand

and supply distributions have finite means, and propose a heuristic for computation.

Using only matching rewards, we establish a modified Monge condition that specifies a dominance

relation between two pairs of demand and supply types. The modified Monge conditions are sufficient

and robustly necessary for the optimal matching policy to satisfy the following priority properties in

the dynamic matching problem. First, for any two pairs of demand and supply types with one strictly

dominating the other, it is optimal to prioritize the matching of the dominating pair over the dominated

pair. Second, it is optimal to greedily match a perfect pair of demand and supply types that dominates all

other pairs sharing its demand or supply type. The modified Monge condition generalizes the condition

of a Monge sequence, discovered by Gaspard Monge in 1781, which guarantees a static and balanced

transportation problem to be solved by a greedy algorithm (see Table 1 for comparisons). As a result of

the priority properties, the optimal matching policy boils down to a match-down-to structure (instead

of matching as much as possible in the greedy algorithm) when considering a specific pair of demand

2The pricing part of Uber’s practice is at a higher level than the matching part. A higher price can encourage more
drivers and discourage more riders to arrive at the market. Given the price is determined and announced, the matching
decisions are made at the operational level after drivers and riders see the price and enter the market. Because our
structural results are distribution free, they can be useful for the matching decisions in Uber’s business practice as well.
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and supply types, along the priority hierarchy. In fact, in the optimal policy, if some pair of demand

and supply types is not matched as much as possible, all pairs that are strictly dominated by this pair

should not be matched at all.

Table 3.1: Comparisons between Monge Sequence and Modified Monge Conditions

Monge Sequence Modified Monge Condition

static, deterministic and balanced dynamic, stochastic and unbalanced

transportation problem matching problem

on a sequence on pairs

sufficient and necessary sufficient, and robustly necessary

a greedy algorithm: our result:

(1) priority property (1) priority property

(2) match as much as possible (2) match-down-to policy

While two pairs of demand and supply types that share a common node may not be comparable

under the modified Monge condition, the priority properties continue to hold for those pairs that indeed

satisfy the modified Monge conditions, even when not all pairs are comparable. In addition, we provide

bounds and heuristics for the general problem as follows.

As a heuristic method, we consider the deterministic counterpart of the stochastic dynamic problem

for any period with t amount of remaining time in the horizon and any given levels of demand and supply;

this can be written as a linear program with O(n ×m × T ) variables. We show that the deterministic

model provides an upper bound on the optimal total surplus of the stochastic model, and that it is

asymptotically optimal to re-solve the linear program for the current period and state and apply the

solution as a heuristic policy, when the the arrival rate of demand and supply of every type becomes

increasingly large.

3.2 Literature Review

We illustrate the high-level positioning of our framework with Figure 3.1. The proposed dynamic-

matching framework can be viewed as a generalization of two foundations of operations management,

i.e., inventory management where the firm orders the supply centrally (Zipkin 2000), and revenue man-

agement where the firm regulates the demand side with a fixed supply side (Talluri and van Ryzin

2006), and of a combination of the two, i.e., joint pricing and inventory control (Chen and Simchi-Levi

2012). Unlike in inventory management and revenue management, the supply in the sharing economy is

crowdsourced. It adds complexity beyond existing operations frameworks of stochastic inventory theory

and revenue management.

More specifically, in connection with inventory management, our framework is closely related to the

literature on inventory rationing, (see, e.g., Evans 1968, Veinott 1965, Ha 1997a,b, de Véricourt et al.
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2002, Abouee-Mehrizi et al. 2012 and Abouee-Mehrizi et al. 2014), which considers a single supply type

and multiple demand types, and allows demand from the less valuable types to be rejected (thus lost

or delayed) in anticipation of future demand from the more valuable types. The matching decisions in

our framework generalize the idea of inventory rationing by considering the characteristics of both the

demand and supply types, such as marginal matching costs and abandonment rates. The current work

is also related to a stream of research on production systems with random yield. Pioneered by Henig and

Gerchak (1990), this stream considers unreliable production that yields only a random portion of the

planned quantity. In contrast, our framework considers a class of problems with purely random sources

of supply, independently of the firm’s decisions, whereas the output from a random-yield production

system is a random fraction or perturbation of the planned amount. In its connection with revenue

management, our framework is closely related to quantity-based revenue management (see, e.g., Talluri

and van Ryzin 2006, Part I), in particular, dynamic capacity allocation models with upgrading (see §4.1

of Chapter 4).

	dynamic matching  
(dynamic, stochastic, with general 
payoff structure and unbalanced, 
time-varying supply and demand) 

dynamic program formulation 
focusing on optimal policy	

	

revenue management  
(demand side) 

e.g., capacity allocation     
with upgradingith 

upgrading

inventory management 
(supply side) 

e.g., inventory rationing, 
random yield 

matching in the literature: e.g., 
         1. college admissions problem 

(marriage problem)     
                2. kidney exchange 

    3. assignment problem 
 (static or deterministic,  

or preference-based,  
or with balanced / stationary  

supply and demand)  
4. queueing formulation focusing on 

performance evaluation, or  
its fluid counterpart 

+	

Figure 3.1: Positioning in the literature.

Driven by real-life applications, economists have studied the college admissions problem (with the

marriage problem as a special case, see, e.g., Teo et al. 2001) and the kidney exchange problem. We

compare our framework with those problems as follows.

The college admissions problem is preference-based, with the focus on the stable matchings. It involves

parties on the demand and supply sides submitting preferences over options (see, e.g., Ashlagi and Shi

2014). As those matching outcomes such as marriage and college admissions can be life-changing, serious

efforts in soliciting preferences are necessary. In contrast, as the sharing economy penetrates into our

everyday lives, soliciting preferences may not be practical. For instance, when riders hail a car on

Uber, they do not have the option, or may not even bother, to choose a driver to be matched with.
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It requires the intermediary to associate pairs of demand and supply with rewards, as they arrive, and

make matching decisions accordingly. To capture this situation, we assign a “monetary” contribution to

a pair of demand and supply types. For example, a lower reward will be assigned if a farther-away car

is dispatched. Moreover, the college admissions problem tends to have a static or deterministic nature.

Supply and demand arrive with submitted preferences, before the matching decisions will be made, as

in the classical marriage problem. In contrast, our framework, as in inventory and revenue management,

emphasizes the dynamic and stochastic nature of a class of matching problems caused by the growth of

the sharing economy and characterized by inter-temporal uncertainties.

Similarly to the college admissions problem, patients in kidney exchange have heterogeneous pref-

erences over kidneys, subject to blood-type and tissue compatibility. (Note that kidney exchange is

different from kidney allocation. In the latter, the organs are harvested from cadaveric donors; see

below.) Moreover, in a typical situation the patient and donor arrive in pairs, with an incompatible

(or less likely, compatible) patient and donor in each pair. Because of the compatibility issue and the

fact that patients and donors arrive in pairs, efficient matching heuristics are focused on cycles, such as

two-way exchanges or chains of patient-donor pairs; see, e.g., Roth et al. (2004, 2007). Most relevant

to our framework is Ünver (2010), which studies dynamic kidney exchange with inter-temporal random

arrivals of patient-donor pairs, and attempts to maximize the number of matched compatible pairs. In

contrast, our model allows arbitrary unbalanced arrivals of demand and supply, with the objective to

maximize social welfare or profit.

In addition to the above matching problems (i.e., college admissions and kidney exchange), serveral

papers on dynamic matching mechanisms and/or decentralized dynamic matching are related to our

work. For a finite-horizon decentralized matching model, Damiano et al. (2005) show that the equilibrium

is characterized by an acceptance/participation threshold on the agent type. Baccara et al. (2016)

consider the matching between two “rounds” and two “squares” that arrive over time (in each period,

exactly one round and one square arrive), and compare the optimal centralized matching mechanism

with the decentralized equilibrium. With stochastic arrival and departure of agents, Akbarpour et al.

(2017) examine the performance of simple matching algorithms for minimizing loss of agents in large

market limits. In contrast with those papers, we consider a centralized matching problem with general

discrete-time arrival process, and maximize the total expected matching reward less costs.

Computer scientists has studied online bipartite matching problems, which have many applications

such as allocation of display advertisements. Initiated by Karp et al. (1990), the classic version considers

a bipartite graph G = (U, V,E), and assumes that the vertices in U arrive in an “online” fashion. That

is, only when a vertex u ∈ U (e.g., a web viewer) arrives, are its incident edges (e.g., his interests)

revealed. Then u can be matched to a previously unmatched adjacent vertex in V (e.g., an advertiser).

The objective is to maximize the number of matchings. There are many variants, all with the focus

on algorithms’ competitive ratios (see Manshadi et al. 2012 for a more recent literature review). The
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main difference from our model is the “online” feature, other than that there is no clear notation of

inventory, with one side (e.g., advertisers) always there and the other (e.g., impressions) getting lost if

not matched. Instead of worst-case analysis, we focus on the expected value optimization.

Operations researchers have also been using the queueing approach or its fluid counterpart to study

two-sided matching. With a fluid approach of modeling stochastic systems, Zenios et al. (2000) and Su

and Zenios (2006) study kidney allocation by exploring the efficiency-equity trade-off, and Akan et al.

(2012) study liver allocation by exploring the efficiency-urgency trade-off. Though focusing on structural

properties of the optimal policy by exploring the stochastic dynamic program, we also propose a heuristic

policy based on a fluid model, and show it is asymptotically optimal. Using double-sided queues, Zenios

(1999) studies the transplant waiting list and Afèche et al. (2014) study trading systems like crossing

networks. Su and Zenios (2004) analyze a queueing model with service discipline FCFS or LCFS to

examine the role of patient choice in the kidney transplant waiting system. Adan and Weiss (2012)

show that the stationary distribution of FCFS matching rates for two infinite multi-type sequences

is of product form. These papers deal with performance evaluation under a given matching policy.

Indeed, Gurvich and Ward (2014) study the dynamic control of matching queues with the objective of

minimizing holding costs. The authors observe that in principle, the controller may choose to wait until

some “inventory” of items builds up to facilitate more profitable matches in the future. We also make a

similar observation.

3.3 The Model

We first introduce the notation before presenting our model. We use a boldface letter to denote a vector

and its light face with subscript i to denote its i-th entry. By default, a vector is treated as a row vector.

We also use a boldface letter to denote a matrix and its light face with subscript ij to denote its (i, j)-th

entry. Let x[k,`] denote the sub-vector of a vector x, containing elements from the k-th entry to the

`-th entry, ek` the k-dimensional unit vector where the `-th entry is 1 and all other entries are 0, and

en×mij the n×m-dimensional matrix where the (i, j)-th entry is 1 and all other entries are 0. We denote

by 1k a k-dimensional vector of 1’s and denote by 0k a k-dimensional vector of 0’s. (The superscript

k may be omitted if the dimension of the zero vector is clear from the context). R+ = {r | r ≥ 0}.

x ∧ y = min{x, y} and x ∨ y = max{x, y}. x+ = max{x, 0} and x− = −min{x, 0}.

Consider a finite horizon with a total number of T periods. In practice, even though demand and

supply arrive in continuous time, matching decisions are typically not made in real time. For example,

Amazon periodically optimizes the way in which it matches customer orders and its warehouses (see Xu

et al. 2009). At the beginning of each period, n types of demand and m types of supply arrive in random

quantities. Let D be the set of demand types and S be the set of supply types. With a slight abuse

of notation, we write D = {1, 2, . . . , n} and S = {1, 2, . . . ,m}, noting that D and S are disjoint sets.
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We use i to index a demand type and j to index a supply type. The pairs of demand and supply are

shown in Figure 3.2 as a bipartite graph. An arc (i, j) represents a match between type i demand and

type j supply. For simplicity, we consider a complete bipartite graph in the base model. In other words,

any demand type can potentially be matched with any supply type, obviously with different rewards (or

equivalently, mismatch costs). We denote the complete set of arcs by A = {(i, j) | i ∈ D, j ∈ S}.

m

n

Supply Demand

Figure 3.2: Pairs of demand and supply.

The state for a given period comprises the demand and supply levels of various types before matching

but after the arrival of random demand Dt ∈ Rn+ and supply St ∈ Rm+ for that period. We make no

strong assumption about the distributions of random demand and supply of various types. To make

meaningful arguments on expectation, we do require that those distributions have bounded means, i.e.,

EDit, ESjt <∞ for all i, j and any period t. In other words, our model and its results can be considered

as being distribution-free. Moreover, the distributions of one period can be exogenously correlated with

another. But our model does not account for endogenized correlations among distributions of demand

and supply, e.g., a driver’s current pickup of a customer may affect future supply at the place where the

driver drops off the customer. That is, we assume away the possible dependence of future distributions

of demand and supply on the current matching decisions.

We denote, as system states, the demand vector by x = (x1, . . . , xn) ∈ Rn+ and the supply vector by

y = (y1, . . . , ym) ∈ Rm+ , where xi and yj are the quantity of type i demand and type j supply available

to be matched. Although we assume that the states and the demand and supply arrivals are continuous

quantities (and therefore so are the matching decisions), our results can be readily replicated if those

quantities are discrete. On observing the state (x,y) ∈ Rn+m
+ , the firm decides on the quantity qij of

type i demand to be matched with type j supply, for any i ∈ D and j ∈ S. For conciseness, we write

the decision variables of matching quantities in a matrix form as Q = (qij) ∈ Rn×m+ , with Qi its i-th

row (as a row vector) and Qj its j-th column (as a column vector). We assume that there is a reward

rij for matching one unit of type i demand and one unit of type j supply for all i, j. Similarly, we can
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write the rewards in a matrix form as R = (rij) ∈ Rn×m. Thus the total reward from matching is linear

in the matching quantities. That is, R ◦Q ≡
∑n
i=1

∑m
j=1 rijqij , where “◦” gives the sum of elements of

the Hadamard product of two matrices. The post-matching levels of type i demand and type j supply

are given by ui = xi−1mQT
i = xi−

∑m
j′=1 qij′ and vj = yj −1nQj = yj −

∑n
i′=1 qi′j , respectively. That

is, u = x− 1mQT and v = y − 1nQ. The post-matching levels cannot be negative; i.e., u ≥ 0, v ≥ 0.3

After the matching is done in each period, each unit of unmatched demand and supply incurs a holding

cost c and h respectively. The cost for demand could be loss of goodwill or waiting costs. Consequently,

the total holding cost amounts to c1nuT + h1mvT = c
∑n
i=1 ui + h

∑m
j=1 vj . The unmatched demand

and supply carry over to the next period with carry-over rates α and β, respectively. In other words,

(1− α) fraction of demand and (1− β) fraction of supply leave the system. Without loss of generality,

we assume they leave the system with zero surplus.

The firm’s goal is to determine a matching policy Q∗ = (q∗ij) that maximizes the expected total

discounted surplus. (Our perspective is the maximizing of social welfare. Alternatively, the formulation

can account for profit maximization if rij is interpreted as the revenue collected from a matching, and c

and h are interpreted as the penalty paid to demand and supply for showing up but without a successful

match in a period.) Let Vt(x,y) be the optimal expected total discounted surplus given that it is in

period t and the current state is (x,y). We formulate the finite-horizon problem by using the following

stochastic dynamic program:

Vt(x,y) = max
Q∈{Q≥0|u≥0,v≥0}

Ht(Q,x,y),

Ht(Q,x,y) = R ◦Q− c1nuT − h1mvT + γEVt+1(αu + Dt, βv + St), (3.1)

where γ ≤ 1 is the discount factor. The boundary conditions are VT+1(x,y) = 0 for all (x,y), without

loss of generality. In other words, at the end of the horizon, all unmatched demand and supply leave the

system with zero surplus.

If α = β = 0, decisions made in different periods are independent of each other. In that case, the

problem reduces to a single period problem. In the remaining of this chapter, we consider the case β > 0,

and assume without loss of generality that β = 1.

The existence of a solution to the dynamic program (3.1) is resolved by the following proposition.

Proposition 3.1 The functions Ht(Q,x,y) and Vt(x,y) are continuous and concave. There exists an

optimal matching policy Q∗t (x,y).

Proof of Proposition 3.1. We prove this result by induction on t. Clearly, VT+1(x,y) ≡ 0 is continous

and concave in (x,y). We suppose Vt+1(x,y) is continous and concave in (x,y), and show that so is

Vt(x,y). First, because Vt+1(x,y) is continous in (x,y), Ht(Q,x,y) is continous in (Q,x,y). Moreover,

3For simplicity, without formal definitions, we will take the liberty of using consistent notation for the post-matching
levels, with its corresponding matching decision. For example, if a matching decision is denoted by Q̄, its corresponding
post-matching levels will be denoted by ū and v̄.
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because the set mapping from (x,y) to the set R(Q; x,y) = {Q | Q ≥ 0,u = x − 1mQT ≥ 0,v =

y − 1nQ ≥ 0} is compact-valued and continuous, by the maximum theorem, Vt(x,y) is continous in

(x,y). Second, since the composition of a concave function and an affine function is still concave (Simchi-

Levi et al. 2014, Proposition 2.1.3(b)), Vt+1(αu+D, βv+S) is concave in (Q,x,y) for any given (D,S).

Then, E(D,S)[Vt+1(αu+D, βv+S)] is concave in (Q,x,y). Then it is immediately clear that Ht(Q,x,y)

is jointly concave in (Q,x,y), because all other terms except the last term in (3.1) are linear in (Q,x,y).

Because the set R(Q; x,y) is a polyhedron defined by a system of linear inequalities, and a fortiori, a

convex set, and the concavity is preserved under maximization over a convex set (Simchi-Levi et al.

2014, Proposition 2.1.15(b)), we have Vt(x,y) = maxQ∈R(Q;x,y)Ht(Q,x,y) is concave.

The existence of an optimal matching policy Q∗t (x,y) follows from the continuity of the function

Ht(Q,x,y) and the compactness of R(Q; x,y) for a given (x,y). �

In general we expect the state-dependent optimal policy to be extremely complex. Next we charac-

terize some of its structural properties.

3.4 Priority Properties of the Optimal Policy

One may expect some intuitive properties of the optimal matching policy, e.g., matching a “perfect” pair

in some sense, as much as possible. We provide sufficient conditions for such properties. Since we aim to

address a general problem that has random dynamics, the conditions would sufficiently guarantee those

properties even for a static problem. Therefore, the conditions we will provide are on the reward matrix

and independent of any other system parameters. These conditions will guarantee that certain priority

structural properties will hold for the dynamic problem at any time and with any realized demand and

supply. For succinctness, we may only present the definitions and results on one side of the market,

analogous definitions and results can be easily stated and obtained for the other side by symmetry.

3.4.1 Modified Monge Partial Order of Arcs

To facilitate discussion, we define a relation “�” between arcs as follows and will show later it is a partial

order. First, we consider neighboring arcs in the bipartite graph (Figure 3.2).

Definition 3.1 (Modified Monge condition for arcs with a common node) (i, j) � (i, j′), if

(i) rij ≥ rij′ and

(ii) rij + ri′j′ ≥ rij′ + ri′j for all i′ ∈ D. (D)

(When i′ = i, condition (D) holds automatically. It is easy to see that (i, j) � (i, j′) holds automatically

for j′ = j.)

Condition (D) is reminiscent of the Monge sequence. Hoffman (1963) provides a necessary and suffi-



www.manaraa.com

Chapter 3. Dynamic Type Matching: The General Framework 50

	

+	

j 

j’ 

	

	

j 

j’ 

 

 

≥	

i 
	

i’ 
‘	

i 
	

i’ 
‘	

Figure 3.3: Condition (D).

cient condition for a transportation problem to be solvable by a greedy algorithm, in which a permutation

(called a Monge sequence, and discovered by Gaspard Monge, a French mathematician, in 1781) is fol-

lowed. A Monge sequence regulates all the arcs in the graph, requiring the inequality in condition (D)

to hold only for all those neighboring arcs (i, j), (i, j′) and (i′, j) whenever (i, j) precedes (i, j′) and

(i′, j) in the sequence. However, Definition 3.1 concerns some pairs of arcs but requires condition (D)

to hold for all alternative nodes i′ that are different from the common node i. The Monge sequence

is introduced to solve a deterministic, demand-supply balanced transportation problem.We propose the

partial order, termed as “modified Monge condition,” to provide sufficient and robustly necessary con-

ditions for structural priority properties in the dynamic demand-supply unbalanced matching problem

with random inter-temporal demand and supply.

Part (i) of Definition 3.1 requires no less reward by matching pair (i, j) than pair (i, j′). To understand

part (ii) of Definition 3.1, we compare the following two strategies: (1) matching one unit of type i

demand and type j supply and another unit of type i′ demand and type j′ supply, and (2) matching

one unit of type i demand and type j′ supply and another unit of type i′ demand and type j supply.

The two strategies have the same post-matching levels of demand and supply. Condition (D) requires

that the former strategy weakly dominate the latter (see Figure 3.3 for an illustration). In other words,

part (ii) of Definition 3.1 implies that there does not exist i′ ∈ D such that the latter strategy leads to a

strictly higher reward than the former. As a result, part (ii) of Definition 3.1 eliminates the optimality

of breaking up the pair (i, j) in matching nodes i, j and j′.

We further define a relation between arcs that do not share any node but can be connected through

a sequence of neighboring arcs regulated by the relation “�”.

Definition 3.2 (Modified Monge condition for arcs without common nodes) For i 6= i′ and j 6= j′, we

say (i, j) � (i′, j′) if there exists a sequence of arcs (i1, j1), (i2, j2), . . . , (ik, jk) such that either ik = ik+1

or jk = jk+1 for k = 1, . . . , n− 1, and (i, j) = (i1, j1) � (i2, j2) � · · · � (ik, jk) = (i′, j′).

In addition, the equivalence relation (i, j) ' (i, j′) means that (i, j) � (i, j′) and (i, j′) � (i, j) hold

simultaneously. We say (i, j) � (i′, j′) if (i, j) � (i′, j′) and (i, j) 6' (i′, j′). One can verify that the

relation “�” is a partial order over A.
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3.4.2 Priority Between Two Pairs of Supply and Demand Types

We will show if (i, j) � (i′, j′), (i, j) has a priority over (i′, j′) in the optimal dynamic matching. To show

this, we first need the following lemma, which shows that a matching decision can be weakly improved

by transferring quantity from the dominated arc (i′, j′) to the dominant one (i, j).

Lemma 3.1 Suppose (i, j) � (i′, j′). In period t, if both decisions Q and Q + εen×mij − εen×mi′j′ are

feasible for the state (x,y), then Ht(Q + εen×mij − εen×mi′j′ ,x,y) ≥ Ht(Q,x,y). In other words, the

decision Q + εen×mij − εen×mi′j′ weakly dominates Q.

Sketch of the proof. We sketch out the proof as follows. The full proof can be found in Section 3.8,

along with the other proofs missing in the main body of this chapter. In period t, for a feasible decision

Q, if we transfer ε amount from (i′, j′) to (i, j) (i.e., decrease the matching quantity on (i′, j′) by ε and

increase that on (i, j) by ε), the immediate benefit for the current period is ε(rij − ri′j′) ≥ 0. However,

as in any dynamic program, this transfer in the current period would also affect the initial states of the

next period, hence also affecting all future periods. In particular, after the transfer, the post-matching

levels (ui, vj) become (ui − ε, vj − ε), and (ui′ , vj′) become (ui′ + ε, vj′ + ε). To decide whether it is

profitable to make the transfer now, one needs to evaluate its impact on all future periods. Suppose in a

future period τ , there exists some type j′′ supply that was supposed to be matched with i for an amount

of η̃τj′′ along a sample path. But now because type i demand could be in short due to the transfer, one

may use i′ instead. Such a replacement has an expected impact of E(η̃τj′′)(ri′j′′ − rij′′) for period τ . The

following lemma suggests that the impact on the value functions due to the transfer from (i′, j′) to (i, j)

in period t− 1 is no worse than the sum of expected impacts due to replacements of i by i′ and j by j′

for all future periods from period t on. The proof is by induction.

Lemma 3.2 In period t, for given (x,y) with xi > 0 and yj > 0, ε1t ∈ [0, xi] and ε2t ∈ [0, yj ], there

exist ητj′′ ≥ 0 and ξτi′′ ≥ 0 for j′′ ∈ S, i′′ ∈ D and τ = t, . . . , T + 1 such that
∑T
τ=t

∑
j′′∈S η

τ
j′′ ≤ ε1t ,∑T

τ=t

∑
i′′∈D ξ

τ
i′′ ≤ ε2t and

Vt(x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ )− Vt(x,y) ≥

T∑
τ=t

γτ−t[
∑
j′′∈S

ητj′′(ri′j′′ − rij′′) +
∑
i′′∈D

ξτi′′(ri′′j′ − ri′′j)].

We further bound the sum of expected future impacts (i.e., the right hand side of the inequality in

Lemma 3.2) from below by −ε(rij − ri′j′) ≤ 0, which leads to the following result.

Lemma 3.3 Suppose (i, j) � (i′, j′). In period t, for given (x,y), ε1 ∈ (0, xi] and ε2 ∈ (0, yj ], we have

Vt(x− ε1eni + ε1e
n
i′ ,y − ε2emj + ε2e

m
j′ )− Vt(x,y) ≥ −ε(rij − ri′j′), where ε = max {ε1, ε2}.

Since the immediate benefit from the transfer is ε(rij − ri′j′) and by Lemma 3.3, the impact of the

transfer on future periods can be bounded below by −ε(rij − ri′j′), the overall effect is nonnegative. �

Lemma 3.1 finds an improvement by transferring some matching quantity from the dominated arc

(i′, j′) to the dominant arc (i, j). The result itself is reminiscent of the augmenting path approach to many

network flow problems. For example, one can formulate a dynamic but deterministic transportation
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problem as a network flow problem (Bookbinder and Sethi 1980), which then can be solved by an

augmenting path approach. However, in our dynamic matching problem with random future demand

and supply, with a certain amount of “flow” transferred from (i, j) to (i′, j′) in period t, the state in the

beginning of period t+1 will be changed. This requires matching quantities from period t+1 to the end

of the horizon to change accordingly to remain feasible along a sample path. The change in period t (the

transfer from (i′, j′) to (i, j)) and possible changes in periods t+1, . . . , T essentially form an “augmenting

cycle,” which contains directed arcs i→ j and j′ → i′. Given the stochastic and dynamic nature of the

problem, it is hard, if not impossible, to write the augmenting cycle in a simple, closed form for every

sample path. Through backward induction, the proof of Lemma 3.1 quantifies the expected impact of

possible changes in periods t+ 1, . . . , T , and shows that the overall effect (together with the transfer of

matching quantity in period t) is nonnegative. This approach adopts the idea of “augmenting path” for

the stochastic dynamic program.

We need the following definitions to facilitate the presentation of our main result on the priority

structure. For any arc (i, j) ∈ A, we define a set of neighboring arcs that are strictly dominated by (i, j):

Lij
def
= {(i′′, j) | (i, j) � (i′′, j)} ∪ {(i, j′′) | (i, j) � (i, j′′)} . We also define

wij = wij(Q,x,y)
def
= min{xi −

∑
j′:(i,j′)/∈Lij

qij′ , yj −
∑

i′:(i′,j)/∈Lij

qi′j}.

If wij = 0, type i or j is exhausted by the matching over arcs outside the set Lij .

Theorem 3.1 (Partial order implies priority) Without loss of generality, assume x > 0 and y > 0 in

period t.4 There exists an optimal decision Q∗ such that for any (i, j) � (i′, j′), min
¶
w∗ij , q

∗
i′j′

©
= 0,

i.e., either Q∗ exhausts type i or j over arcs outside Lij, or q∗i′j′ = 0.

Proof of Theorem 3.1. Define A1 = {(i′, j′) ∈ A | @(i, j) ∈ A such that (i, j) � (i′, j′)} as the set of

undominated arcs. Further defineAk = {(i′, j′) ∈ A\(
⋃k−1
l=1 Al) | @(i, j) ∈ A\(

⋃k−1
l=1 Al) such that (i, j) �

(i′, j′)} inductively. Since the total number of arcs is finite, only a finite number of Ak’s are non-empty.

Let K + 1 = min {k ∈ N | Ak = ∅}. Then A =
⋃K
k=1Ak.

For the given state (x,y) and a feasible decision Q, we construct another feasible decision that

satisfies the desired priority property and weakly dominates Q. Consider the following construction.

Step 0. Let k ← 1 and ‹A ← A.

Step 1. Pick (i, j) ∈ Ã
⋂
Ak.

Step 2. Find a pair of arcs (i′′, j) ≺ (i, j) and (i, j′′) ≺ (i, j) such that qi′′j > 0 and qij′′ > 0. Let

Q ← Q − εen×mi′′j − εe
n×m
ij′′ + εen×mij + εen×mi′′j′′ , where ε = min {qi′′j , qij′′}. Repeat this step until we can

no longer find such (i′′, j) and (i, j′′), at which point either qi′′j = 0 for all (i′′, j) ≺ (i, j) or qij′′ = 0 for

all (i, j′′) ≺ (i, j).

Step 3. In the case in which qi′′j = 0 for all (i′′, j) ≺ (i, j), find (i, j′′) ≺ (i, j) such that qij′′ > 0 and

4If xi = 0 (or yj = 0), we can delete demand node i (or supply node j) and all its connected arcs, on which matching
quantities are set to zero.
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let Q ← Q− δen×mij′′ + δen×mij , where δ = min {qij′′ , vj}. Repeat this until either vj = 0 or qij′′ = 0 for

all (i′′, j) � (i, j).

In the case in which qij′′ = 0 for all (i, j′′) ≺ (i, j), find (i′′, j) ≺ (i, j) such that qi′′j > 0. Let

Q ← Q− θen×mi′′j + θen×mij , where θ = min {qi′′j , ui}. Repeat this until either ui = 0 or qi′′j = 0 for all

(i, j′′) ≺ (i, j).

At the end of Step 3, one of the followings is true: (i) uivj = 0; (ii) qi′′j = qij′′ = 0 for all (i′′, j) ≺ (i, j)

and (i, j′′) ≺ (i, j).

Step 4. Find (i′, j′) ≺ (i, j) such that qi′j′ > 0. Let Q ← Q − ηen×mi′j′ + ηen×mij , where η =

min {ui, vj , qi′j′}. Repeat this until either uivj = 0 or qi′j′ = 0 for all (i′, j′) ≺ (i, j).

Step 5. Let Ã← ‹A\{(i, j)}. If Ã
⋂
Ak = ∅, let k ← k + 1. Go to Step 1 if k ≤ K. Stop if k > K.

It is easy to see that each (i, j) ∈ A is chosen exactly once in Step 1. At the end of Step 2,

suppose without loss of generality, that qi′′j = 0 for all (i′′, j) ≺ (i, j). Then at the end of Step 3,

either vj = 0 or qij′′ = qi′′j = 0 for all (i, j′′), (i′′, j) ∈ Lij . In the former case, yj −
∑

(i′′,j)/∈Lij qi′′j =

yj −
∑
i′′∈D qi′′j = vj = 0, implying that wij = 0. In the latter case, at the end of Step 4, either

qi′j′ = 0 for all (i′, j′) ≺ (i, j) which satisfies the desired property, or uivj = 0. For the case of uivj =

0, wij = min
¶
xi −

∑
(i,j′′)/∈Lij qij′′ , yj −

∑
(i′′,j)/∈Lij qi′′j

©
= min

{
xi −

∑
j′′∈S qij′′ , yj −

∑
i′′∈D qi′′j

}
=

min {ui, vj} = 0, where the second equality is due to qij′′ = qi′′j = 0 for all (i, j′′), (i′′, j) ∈ Lij . Thus,

the desired property will be satisfied by any (i′, j′) ≺ (i, j) for a given (i, j). At the end of the whole

construction procedure, the desired property will be satisfied by any pair (i, j) � (i′, j′).

By Lemma 3.1, the construction procedure keeps weakly improving the matching decision via Steps

2, 3 and 4. Moreover, the procedure stops in a finite number of steps. In the end, we obtain a new

feasible decision that satisfies the desired property and weakly dominates the original decision. �

The northwest corner rule under the assumption of a Monge sequence can completely solve the

deterministic and balanced version of those problems in a greedy fashion. For the stochastic version,

we show in Theorem 3.1 that the priority structure preserves under the modified Monge conditions,

a somewhat stronger set of assumptions than the Monge sequence.5 However, even a pair has higher

priority in the optimal matching, they are not necessarily matched in a greedy fashion; when they are

not exhausted, all pairs that have strictly lower priority should not be matched.

The condition (i, j) � (i′, j′) is not necessary for the priority property; see Example 3.1 below.

Nevertheless, it is “necessary” in a robust sense against all possible scenarios. In other words, if (i, j) �

(i′, j′) fails to hold, one can construct a scenario, by choosing the parameters other than the reward

matrix R, such that (i′, j′) has a higher priority over (i, j) in the optimal policy. Hence, the modified

Monge conditions are arguably the best conditions on the reward matrix one can hope for in order to

guarantee a general priority structure in the optimal policy.

Example 3.1 Consider D = {1, 2, 3} and S = {1, 2, 3}. Let r13 = r22 = r31 = r33 = ε, r12 = r21 = N ,

5If all arcs are comparable under our partial order along the sequence, then it is a Monge sequence. But we do not
require all arcs to be comparable in general.
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r11 = 3
2N , r23 = r32 = 2N , c = h = ε, where ε is sufficiently small and N is sufficiently large. In the

current period, assume x = y = (1, 1, 0). See Figure 3.4 for an illustration. Suppose that there is a high

chance of type 3 demand or supply arriving in the next period. It is optimal to save the unit of type 2

demand and the unit of type 2 supply for the future; i.e., q∗2j′ = q∗i′2 = 0 for all i′ ∈ D, j′ ∈ S. On the

other hand, it is optimal to fully match the unit of type 1 demand and the unit of type 1 supply, i.e.,

q∗11 = 1. Thus, it is optimal to prioritize matching type 1 demand and type 1 supply over matching type 1

demand and type 2 supply. However, here r11 + r22 < r12 + r21, implying that (1, 1) � (1, 2) is false. �

1	 1	

2	

3	

2	

3	

Unit	reward	=	2N	

Unit	reward	=	1.5N	

Unit	reward	=	N	

Unit	reward	=		ε

q11
* =1

q12
* = 0

Figure 3.4: The structure of the matching problem in Example 3.1

3.4.3 Perfect Pair

Next we provide a sufficient condition for a pair of demand and supply types to be matched in a greedy

fashion in preference to all other possible matching options.

Theorem 3.2 (When greedy matching is optimal) If (i, j) � (i, j′) for all j′ ∈ S and (i, j) � (i′, j) for

all i′ ∈ D, then q∗ij = min {xi, yj} .

Theorem 3.2 is not a direct consequence of Theorem 3.1. By directly applying Theorem 3.1, we can

only say that under the conditions in Theorem 3.2, it is optimal for the firm to prioritize the matching

of type i demand and type j supply over any other possibilities. However, it may still be possible that

the firm has reserved some type i demand and type j supply without greedily matching them.

The conditions in Theorem 3.2, i.e., (i, j) � (i, j′) for all j′ and (i, j) � (i′, j) for all i′, say that the

pair (i, j) dominates all other pairs that share type i demand or type j supply. We say that such a pair

forms a perfect pair in the eyes of the intermediary firm. Example 3.1 also serves as a counterexample

illustrating that conditions in Theorem 3.2 are not necessary for greedy matching, though one can say

that they are “necessary” in a robust sense against all possible scenarios. The dominance relations in

Theorem 3.2 contain two sets of conditions on rewards. The first set, rij ≥ maxi′∈D,j′∈S {rij′ , ri′j},
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says that the matching between type i demand and type j supply generates the highest reward among

other possible uses of those resources. As a result, type i demand and type j supply are the most

favorable for each other from their own perspective. However, they may not form a perfect pair from

the intermediary’s point of view unless another set of conditions is satisfied. The following example

illustrates that the condition rij ≥ maxi′∈D,j′∈S {rij′ , ri′j} is not enough for the intermediary firm to

adopt a greedy match. This is because from a centralized planner’s perspective, the components of a

most favorable pair for each other may be separately paired with others to generate an overall higher

reward. This example emphasizes the importance of the second set of conditions in the modified Monge

partial order—i.e., condition (D) holds for all i′ with any given j′ and for all j′ with any given i′—for

guaranteeing that a greedy match between type i demand and type j supply will be optimal.

Example 3.2 The claim in Theorem 3.2 may fail without the set of condition (D)’s even for a single-

period model. To see this, consider a one-period example with D = {1, 2, 3} and S = {1, 2, 3}. Suppose

that r11 = r22 = r33 = 2N , r12 = r21 = r23 = r32 = N + ε, r13 = r31 = ε, where N > ε > 0. Here,

r22 ≥ max{r21, r23, r12, r32}, i.e., (2, 2) generates the highest reward. In the current period, assume

x = (1, 1, 0) and y = (0, 1, 1). If we fully match the type 2 demand with the type 2 supply, then the type 1

demand has to be matched with the type 3 supply given there is only one period, leading to a total reward

of r22 + r13 = 2N + ε. Alternatively, if we match the type 2 demand with the type 3 supply and match

the type 1 demand with the type 2 supply, the total reward is r23 + r12 = 2(N + ε), which is higher than

r22 + r13, violating the condition (2, 2) � (2, 3). In this example, we see that although the type 2 demand

and type 2 supply are the most favorable for each other in terms of generating the highest reward, they

are not a perfect pair in the eyes of the centralized planner. �

As an immediate application of Theorem 3.2, consider demand and supply types that are specified

by their locations in an Euclidean space. The reward of matching supply with demand is a fixed prize

minus the disutility proportional to the Euclidean distance between the supply location and the demand

location. It is easy to verify that a demand type and a supply type from the same location forms a

perfect pair, and by Theorem 3.2, they should be matched as much as possible. To see why they are a

perfect pair, we have rii + ri′j′ ≥ rij′ + ri′i because di′j′ ≤ dij′ +di′i, where dij is the Euclidean distance

between the locations of type i demand and type j supply. The latter inequality is simply the triangle

inequality. We summarize this result as follows.

Corollary 3.1 In an Euclidean space with horizontally differentiated types as locations, it is optimal to

greedily match the demand and supply from the same location.

Corollary 3.1 suggests that with geographic locations as types, the intermediary firm such as Uber and

Amazon should always match a demand with a supply if they are originated from the same geographic

region, or practically speaking, if they are sufficiently close to each other.

The matching quantity between an imperfect pair needs to be find out numerically. In the next

section, we propose a heuristic for tractable computations.
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3.5 Bound and Heuristic

In this section we study the deterministic counterpart of the stochastic problem in its general form.

We show that the heuristic suggested by the deterministic model can be computed efficiently and is

asymptotically optimal for the stochastic problem.

3.5.1 The Deterministic Resolving Heuristic

We consider the deterministic model by ignoring the uncertainty and assume that the mean demand

quantity λit = EDit and mean supply quantity µjt = ESjt arrive in each period. The linear program

(Px,y
τ ) max

qijt,xit,yjt

T∑
t=τ

γt−1[
n∑
i=1

m∑
j=1

rijqijt − c(
n∑
i=1

xit −
n∑
i=1

m∑
j=1

qijt)− h(
m∑
j=1

yjt −
n∑
i=1

m∑
j=1

qijt)]

s.t.
m∑
j=1

qijt ≤ xit, i ∈ D, t = τ, τ + 1, . . . , T,

n∑
i=1

qijt ≤ yjt, 1 ≤ j ≤ m, τ ≤ t ≤ T,

xi,t+1 = α(xit −
m∑
j=1

qijt) + λit, i ∈ D, t = τ, . . . , T − 1,

yj,t+1 = β(yjt −
n∑
i=1

qijt) + µjt, 1 ≤ j ≤ m, τ ≤ t ≤ T − 1,

qijt ≥ 0, i ∈ D, j ∈ S, t = τ, . . . , T,

xiτ = xi, yjτ = yj , i ∈ D, j ∈ S. (3.2)

gives the formulation of the problem from period τ to period T , where (x,y) = (x1, . . . , xn, y1, . . . , ym)

is a given initial state at the beginning of period τ .

From the optimal solution to (Px,y
τ ), {q̂ijt, x̂it, ŷjt}i∈D,j∈S,t=τ,...,T , we obtain a feasible matching

decision {q̂ijτ}i∈D,j∈S in period τ for state (x,y), and use it as a heuristic decision. If we start in period

1 with an initial state (x1,y1), we will solve (Px1,y1

1 ) to obtain matching decisions {q̂ij1}i∈D,j∈S in period

1. Given a realization of demand and supply in period 2 as D2 = d2 and S = s2, respectively. The state

in period 2 is then (x2,y2) = (αû + d2, βv̂ + s2). We then solve (Px2,y2

2 ) to obtain the heuristic decision

in period 2. We proceed until period T to obtain the heuristic decisions along a sample path of demand

and supply realization. We refer to this heuristic as the deterministic resolving heuristic.

Intuitively, one would expect that the uncertainty in demand and supply in the stochastic model

would result in lower expected surplus. One can think of the variables xit, yjt and qijt as the expected

available quantity of type i demand, that of type j supply and the expected matching quantity of arc

(i, j) between i and j in period t. While the stochastic problem requires constraints in (3.1) to be

satisfied for each sample path, the deterministic model only requires the expected variables xit, yjt and
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qijt to satisfy the constraints. Thus the deterministic model is a relaxation of the stochastic one and

provides an upper bound on the stochastic model’s optimal surplus.

Proposition 3.2 (Deterministic upper bound) The deterministic model provides an upper bound on the

optimal total surplus of the stochastic model.

Proof of Proposition 3.2. Let Ω be the set of all sample paths of demand and supply realizations

over the finite horizon, ω ∈ Ω be a sample path, and p(ω) be the density at ω. We rewrite the stochastic

model in the following form of a stochastic program.

(Sx,y
τ ) max

∫
Ω

p(ω)
T∑
t=τ

γt−1{
n∑
i=1

m∑
j=1

rijqijt(ω)− c
n∑
i=1

[xit(ω)−
m∑
j=1

qijt(ω)]− h
m∑
j=1

[yjt(ω)−
n∑
i=1

qijt(ω)]}dω

s.t. xi,t+1(ω) = α[xit(ω)−
m∑
j=1

qijt(ω)] +Dit(ω), for all i ∈ D, τ = t, t+ 1, . . . , T − 1 and ω ∈ Ω,

yj,t+1(ω) = β[yjt(ω)−
n∑
i=1

qijt(ω)] + Sjt(ω), for all j ∈ S, τ = t, t+ 1, . . . , T − 1 and ω ∈ Ω,

n∑
i=1

qijt(ω) ≤ yjt(ω) for all j ∈ S, τ = t, t+ 1, . . . , T and ω ∈ Ω,

m∑
j=1

qijt(ω) ≤ xit(ω) for all i ∈ D, τ = t, t+ 1, . . . , T and ω ∈ Ω,

qijt(ω) ≥ 0 for all i ∈ D, j ∈ S, τ = t, t+ 1 . . . , T and ω ∈ Ω.

xiτ = xi, yjτ = yj , for i ∈ D, j ∈ S, ω ∈ Ω.

We denote by Q∗ijt(ω), ω ∈ Ω, the optimal matching strategy, and by x∗it(ω) and y∗jt(ω) the associated

state trajectory. Let x̄it, ȳjt and q̄ijt be the expectation of x∗it(ω), y∗jt(ω) and q∗ijt(ω) over Ω, respectively.

Because all sample paths satisfy the constraints of problem (Sx,y
τ ), as expectations, (q̄ijt, x̄it, ȳjt) is

feasible for the deterministic problem (Px,y
τ ), with the corresponding objective value equal to the optimal

value of the stochastic problem (Sx,y
τ ). Therefore, the deterministic problem (Px,y

τ ) has a larger optimal

value than the stochastic problem (Sx,y
τ ). �

Next we show that the heuristic policy suggested by the deterministic problem is asymptotically

optimal. Consider a series of stochastic systems indexed by k = 1, 2, . . ., with 1 representing the original

system. We scale the time in system k so that the arrival of demand and supply in system k is k times

more intense compared with the original system (equivalently, the clock is k times faster than the original

system) in any given period t. Thus, instead of having random demand Dit for type i ∈ D and random

supply Sjt for type j ∈ S arriving in a period, system k will have an amount of Dit(k) =
∑k
`=1D

`
it for

type i ∈ D and Sjt(k) =
∑k
`=1 S

`
jt for type j ∈ S arriving in period t, where the D`

it’s are i.i.d. with

the same distribution as Dit, and the S`jt’s are i.i.d. with the same distribution as Sjt. Let V kt (x,y)

be the value function in system k, V
det(k)
t (x,y) the value function for the deterministic model, and

V
resolve(k)
t (x,y) the value for applying the deterministic resolving heuristic in system k. For simplicity,
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we write V det
t (x,y) = V

det(1)
t (x,y) and V resolve

t (x,y) = V
resolve(1)
t (x,y). The following theorem shows

that the deterministic resolving heuristic is asymptotically optimal with a convergence rate O(1/
√
k).

Theorem 3.3 (Asymptotic optimality of the deterministic heuristic and rate of convergence) In the stochas-

tic system k, the deterministic resolving heuristic leads to the relative error [V kt (x,y)−V resolve(k)
t ]/V kt (x,y) =

O(1/
√
k) as k →∞.

3.6 Numerical Experiments

We now test the effectiveness of the deterministic heuristic. Consider a 10-period dynamic matching

problem with 5 supply types and 5 demand types. For each instance of the problem, we generate the

parameters uniformly at random as follows.

Let rij ∼ Uniform[50, 150] (for all i ∈ D and j ∈ S), c ∼ Uniform[0, 50], h ∼ Uniform[0, 50],

α ∼ Uniform[0, 1], β ∼ Uniform[0, 1], µ = ES ∼ Uniform[10, 25], λ = ED ∼ Uniform[10, 25], γ ∼

Uniform[0.8, 1].

In addition, we also randomly generate the initial state (x0,y0) at the beginning of the first period.

We let x0
i ∼ Uniform[0, 30] and y0

j ∼ Uniform[0, 30] for all i ∈ D and j ∈ S.

We run two sets of numerical experiments as described as follows.

(a) Demand and supply follow a uniform distribution. For given realizations of λi and µj , we

generate δdi ∼ Uniform[0, λi] and δsj ∼ Uniform[0, µj ]. Then, we let Di ∼ Uniform[λi − δdi , λi + δdi ] and

Sj ∼ Uniform[µj − δsj , µj + δsj ].

(b) Demand and supply follow a normal distribution. For given realizations of λi and µj , we

generate σdi ∼ Uniform[0, λi/3] and σsj ∼ Uniform[0, µj/3]. Then, we let Di ∼ Normal(λi, σ
d
i ) and

Sj ∼ Normal(µj , σ
s
j ).

Note that all the parameters are generated independently. For each randomly generated instance,

we solve the 10-period deterministic problem (P) and obtain the optimal value V det, which is an upper

bound of the optimal value V opt of the stochastic problem. Let Ṽ be the optimal value of the expected

total discounted reward minus costs, when the deterministic heuristic is applied throughout the decision

horizon. We calculate Ṽ approximately by simulation: For each randomly generated sample path ω, in

period t (t = 1, . . . , T ) with state (xt(ω),yt(ω)), apply the optimal decision from solving the (T − t+ 1)-

period problem with initial state (xt(ω),yt(ω)); The total reward minus cost for the sample path ω can

be easily calculated; Then we average over 5000 sample paths to obtain the approximate value of Ṽ .

Since (V opt − Ṽ )/V opt ≤ (V det − Ṽ )/V det, the relative error by the deterministic heuristic is small as

long as the right-hand-side of the above inequality is small. Thus, we focus on ρ = (V det − Ṽ )/V det to

measure the relative error.

For set (a) of the experiments, 600 instances are generated. Among the 600 instances, the maximum

value of ρ is 21.24%, the mean is 9.84% and the median is 9.51%.
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For set (b) of the experiments, 820 instances are generated. Among the 820 instances, the maximum

value of ρ is 19.24%, the mean is 7.24% and the median is 6.79%.

The empirical cumulative distribution functions for the two sets of ρ values are shown in Figures 3.5

and 3.6, respectively. We see that the values of ρ are relatively small. Since ρ is just an upper bound of

the relative error, the relative error would be even smaller.
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Figure 3.5: Empirical cdf of ρ: Uniformly distributed demand and supply

3.7 Conclusion

In this chapter, we generalize, the Monge sequence condition that is necessary and sufficient for a

greedy algorithm to solve a deterministic and balanced transportation problem, to a stochastic and

dynamic matching problem. The generalization involves extending the notion of “augmenting path” to

a stochastic and dynamic setting through backward induction. The modified Monge conditions on the

reward matrix that we discover are sufficient, and in a robust sense, necessary, to guarantee a priority

structure (somewhat weaker than the greedy algorithm) in the optimal matching policy for the general

problem with intertemporally random demand and supply. We also propose to solve the deterministic

counterpart for providing heuristic solutions for the stochastic problem. We show that the deterministic

heuristic provides an upper bound on the performance of the stochastic problem, and is asymptotically

optimal as we scale up demand and supply.
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Figure 3.6: Empirical cdf of ρ: Normally distributed demand and supply

3.8 Appendix

Proof of Lemma 3.1. Let u = x− 1mQT and v = y − 1nQ. We have

Ht(Q + εen×mij − εen×mi′j′ ,x,y)−Ht(Q,x,y)

=(rij − ri′j′)ε+ γEVt+1(αu + D− αεeni + αεeni′ , βv + S− βεemj + βεemj′ )− γEVt+1(αu + D, βv + S)

≥(rij − ri′j′)ε+ γmax {α, β} ε(ri′j′ − rij)

=(1− γmax {α, β})ε(rij − ri′j′) ≥ 0,

where the first inequality is due to Lemma 3.3 and the last inequality is due to that α, β, γ ≤ 1 and

(i, j) � (i′, j′). �

Proof of Lemma 3.2. The result holds trivially for t = T +1 by the boundary condition VT+1(x,y) ≡

0. Suppose it holds for t+ 1. We show that it also holds for t.

Consider a given (x,y) with xi > 0 and yj > 0, ε1t ∈ [0, xi] and ε2t ∈ [0, yj ]. Let

Q̂ ∈ arg max
Q∈{Q≥0|u≥0,v≥0}

Ht(Q,x,y).

We claim that:

Claim. There exist nonnegative numbers ηtj′′ for j′′ ∈ S and ξti′′ for i′′ ∈ D such that
∑
j′′∈S η

t
j′′ ≤ ε1t ,∑

i′′∈D ξ
t
i′′ ≤ ε2t , and the decision ‹Q = Q̂ +

∑
i′′∈D(ξti′′e

n×m
i′′j′ − ξti′′e

n×m
i′′j ) +

∑
j′′∈S(ηtj′′e

n×m
i′j′′ − ηtj′′e

n×m
ij′′ )

is feasible under the state (x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ ).
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Proof of Claim. We construct ηtj′′ as follows. Let ηt1 = min{q̂i1, ε1t}. Then, recursively, let ηtj′′ =

min
¶
q̂ij′′ , ε

1
t −

∑j′′−1
k=1 ηtk

©
for j′′ = 2, . . . ,m.

We first prove ε1t −
∑j′′

k=1 η
t
k = (ε1t −

∑j′′

k=1 q̂ik)+ for all j′′ ∈ S by induction, which guarantees that

ηtj′′ ≥ 0 and
∑m
j′′=1 η

t
j′′ ≤ ε1t . For j = 1, ε1t − ηt1 = ε1t −min{q̂i1, ε1t} = (ε1t − q̂i1)+. Thus the equation

holds for j′′ = 1. Suppose it holds for j′′. Then for j′′ + 1,

ε1t −
j′′+1∑
k=1

ηtk =(ε1t −
j′′∑
k=1

ηtk)− ηtj′′+1 = (ε1t −
j′′∑
k=1

ηtk)−min{ε1t −
j′′∑
k=1

ηtk, q̂i,j′′+1}

=(ε1t −
j′′∑
k=1

q̂ik)+ −min{(ε1t −
j′′∑
k=1

q̂ik)+, q̂i,j′′+1}

=[(ε1t −
j′′∑
k=1

q̂ik)+ − q̂i,j′′+1]+ = [ε1t −
j′′∑
k=1

q̂ik − q̂i,j′′+1]+ = [ε1t −
j′′+1∑
k=1

q̂ik]+,

which completes the induction.

Hence, we have ε1t −
∑m
j′′=1 η

t
j′′ = (ε1t −

∑m
j′′=1 q̂ij′′)

+. Case (i): If
∑m
j′′=1 q̂ij′′ < ε1t , then ε1t −∑m

j′′=1 η
t
j′′ = ε1t−

∑m
j′′=1 q̂ij′′ , implying that

∑m
j′′=1 q̂ij′′ =

∑m
j′′=1 η

t
j′′ . Case (ii): If

∑m
j′′=1 q̂ij′′ ≥ ε1t , then

ε1t −
∑m
j′′=1 η

t
j′′ = 0, implying that ε1t =

∑m
j′′=1 η

t
j′′ . Combining the two cases, we have

∑m
j′′=1 η

t
j′′ ≤ ε1t .

Now we show that the decision Q̄ = Q̂ +
∑
j′′∈S(ηtj′′e

n×m
i′j′′ − ηtj′′e

n×m
ij′′ ) is feasible under the state

(x̄, ȳ) ≡ (x− ε1teni + ε1te
n
i′ ,y) in period t.

Since Q̂ is optimal for the state (x,y), a fortiori, Q̂ is feasible, i.e., Q̂ ≥ 0, 1mQ̂T ≤ x and 1nQ̂ ≤ y.

We show that Q̄ is feasible for the new state (x̄, ȳ) ≥ 0, where the latter inequality is due to xi > 0 and

ε1t ∈ [0, xi]. To this end, it suffices to show that Q̄ ≥ 0, 1mQ̄T ≤ x̄ and 1nQ̄ ≤ ȳ.

First, for all j, because 0 ≤ ηtj ≤ q̂ij , we have q̄ij = q̂ij−ηtj ≥ 0. Also, it is clear that q̄i′j = q̂i′j+η
t
j ≥ 0

for all j. For any i′′ 6= i, i′, we have q̄i′′j = q̂i′′j ≥ 0 for all j. Thus, Q̄ ≥ 0.

Second, we have 1mQ̄T
i = 1mQ̂T

i −
∑
j′′∈S η

t
j′′ =

∑m
j′=1 q̂ij′ −

∑
j′′∈S η

t
j′′ . If

∑m
j=1 q̂ij < ε1t , we

have 1mQ̄T
i =

∑m
j′=1 q̂ij′ −

∑
j′′∈S η

t
j′′ = 0 ≤ x̄i. If

∑m
j=1 q̂ij ≥ ε1t , then ε1t =

∑
j′′∈S η

t
j′′ . Thus,

1mQ̄T
i = 1mQ̂T

i −
∑
j′′∈S η

t
j′′ = 1mQ̂T

i − ε1t ≤ xi− ε1t = x̄i. We also have 1mQ̄T
i′ = 1mQ̂T

i′ +
∑
j′′∈S η

t
j′′ ≤

1mQ̂T
i′ + ε1t ≤ xi′ + ε1t = x̄i′ . For any i′′ 6= i, i′, 1mQ̄T

i′′ = 1mQ̂T
i′′ ≤ xi′′ = x̄i′′ . Therefore, 1mQ̄T ≤ x̄.

Finally, 1nQ̄ = 1nQ̂ + 1n(−
∑m
j′=1 η

t
j′e

n×m
ij′ +

∑m
j′=1 η

t
j′e

n×m
i′j′ ) = 1nQ̂ + 0 ≤ y = ȳ.

Define ξt1 = min{q̄1j , ε
2
t} and ξti′′ = min

¶
q̄i′′j , ε

2
t −

∑i′′−1
k=1 ξtk

©
for i′′ = 2, . . . , n. Following a symmet-

ric analysis, we can show that the decision ‹Q = Q̄ +
∑
i′′∈D(ξti′′e

n×m
i′′j′ − ξti′′e

n×m
i′′j ) is feasible under the

state (x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ ) = (x̄, ȳ − ε2temj + ε2te

m
j′ ). This proves the claim. �

Now denote by u and v the post-matching levels under the state (x,y) and the decision Q̂ in period

t. Define ε1t+1 = α(ε1t −
∑
j′′∈S η

t
j′′) and ε2t+1 = β(ε2t −

∑
i′′∈D ξ

t
i′′). We have:

Vt(x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ )− Vt(x,y)

≥Ht(‹Q,x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ )−Ht(Q̂,x,y)



www.manaraa.com

Chapter 3. Dynamic Type Matching: The General Framework 62

≥
∑
i′′∈D

ξti′′(ri′′j′ − ri′′j) +
∑
j′′∈S

ηtj′′(ri′j′′ − rij′′)

+ γEVt+1(α[u− (ε1t −
∑
j′′∈S

ηtj′′)e
n
i + (ε1t −

∑
j′′∈S

ηtj′′)e
n
i′ ] + D, β[v − (ε2t −

∑
i′′∈D

ξti′′)e
m
j + (ε2t −

∑
i′′∈D

ξti′′)e
m
j′ ] + S)

− γEVt+1(αu + D, βv + S)

=
∑
i′′∈D

ξti′′(ri′′j′ − ri′′j) +
∑
j′′∈S

ηtj′′(ri′j′′ − rij′′)

+ γEVt+1(αu− ε1t+1e
n
i + ε1t+1e

n
i′ + D, βv − ε2t+1e

m
j + ε2t+1e

m
j′ + S)− γEVt+1(αu + D, βv + S).

(3.3)

Let Xt+1 = αu + D and Yt+1 = βv + S. By the induction hypothesis, there exist Kτ
j′′ and Lτi′′ for

j′′ ∈ S, i′′ ∈ D and τ = t + 1, . . . , T such that
∑T
τ=t+1

∑
j′′∈S K

τ
j′′ ≤ ε1t+1,

∑T
τ=t+1

∑
i′′∈D L

τ
i′′ ≤ ε2t+1

and

Vt+1(Xt+1 − ε1t+1e
n
i + ε1t+1e

n
i′ ,Yt+1 − ε2t+1e

m
j + ε2t+1e

m
j′ )− Vt+1(Xt+1,Yt+1)

≥
T∑

τ=t+1

γτ−t−1[
∑
j′′∈S

Kτ
j′′(ri′j′′ − rij′′) +

∑
i′′∈D

Lτi′′(ri′′j′ − ri′′j)]. (3.4)

Let ητj′′ = EKτ
j′′ and ξτi′′ = ELτi′′ for j′′ ∈ S, i′′ ∈ D and τ = t+ 1, . . . , T . We have

Vt(x− ε1teni + ε1te
n
i′ ,y − ε2temj + ε2te

m
j′ )− Vt(x,y)

≥
∑
i′′∈D

ξti′′(ri′′j′ − ri′′j) +
∑
j′′∈S

ηtj′′(ri′j′′ − rij′′)

+ γEVt+1(αu− ε1t+1e
n
i + ε1t+1e

n
i′ + D, βv − ε2t+1e

m
j + ε2t+1e

m
j′ + S)− γEVt+1(αu + D, βv + S)

≥
∑
i′′∈D

ξti′′(ri′′j′ − ri′′j) +
∑
j′′∈S

ηtj′′(ri′j′′ − rij′′) +
T∑

τ=t+1

γτ−t[
∑
j′′∈S

ητj′′(ri′j′′ − rij′′) +
∑
i′′∈D

ξτi′′(ri′′j′ − ri′′j)]

=
T∑
τ=t

γτ−t[
∑
j′′∈S

ητj′′(ri′j′′ − rij′′) +
∑
i′′∈D

ξτi′′(ri′′j′ − ri′′j)],

where the first inequality is (3.3) and the second inequality is due to (3.4).

Moreover,
∑T
τ=t

∑
j′′∈S η

τ
j′′ =

∑
j′′∈S η

t
j′′+E

∑T
τ=t+1

∑
j′′∈S K

τ
j′′ ≤

∑
j′′∈S η

t
j′′+ε

1
t+1 =

∑
j′′∈S η

t
j′′+

α(ε1t−
∑
j′′∈S η

t
j′′) = αε1t+(1−α)

∑
j′′∈S η

t
j′′ ≤ ε1t , because

∑
j′′∈S η

t
j′′ ≤ ε1t . Similarly,

∑T
τ=t

∑
i′′∈D ξ

τ
i′′ =∑

i′′∈D ξ
t
i′′ + E

∑T
τ=t+1

∑
i′′∈D L

τ
i′′ =

∑
i′′∈D ξ

t
i′′ + ε2t+1 ≤

∑
i′′∈D ξ

t
i′′ + β(ε2t −

∑
i′′∈D ξ

t
i′′) ≤ ε2t . This

completes the induction. �

Proof of Lemma 3.3. By Lemma 3.2, there exist nonnegative numbers ητj′′ and ξτi′′ for j′′ ∈ S, i′′ ∈ D

and τ = t, . . . , T + 1 such that
∑T
τ=t

∑
j′′∈S η

τ
j′′ ≤ ε1,

∑T
τ=t

∑
i′′∈D ξ

τ
i′′ ≤ ε2 and

Vt(x− ε1eni + ε1e
n
i′ ,y − ε2emj + ε2e

m
j′ )− Vt(x,y)
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≥
T∑
τ=t

γτ−t[
∑
j′′∈S

ητj′′(ri′j′′ − rij′′) +
∑
i′′∈D

ξτi′′(ri′′j′ − ri′′j)]. (3.5)

Since (i, j) � (i′, j′), there exists a decreasing sequence connecting the two arcs. Without loss of

generality, we choose a path in the form of (i, j) = (i1, j1) � (i1, j2) � (i2, j2) � · · · � (i`, j`) = (i′, j′),

and the proof for the other forms would be analogous. The condition (ik, jk) � (ik+1, jk) implies that

rikjk + rik+1j′′ ≥ rikj′′ + rik+1jk , i.e., rik+1j′′ − rikj′′ ≥ rik+1jk − rikjk . Thus

ri′j′′ − rij′′ = ri`j′′ − ri1j′′ =
`−1∑
k=1

(rik+1j′′ − rikj′′) ≥
`−1∑
k=1

(rik+1jk − rikjk). (3.6)

Likewise, the condition (ik+1, jk) � (ik+1, jk+1) implies that

ri′′j′ − ri′′j = ri′′j` − ri′′j1 =
`−1∑
k=1

(ri′′jk+1
− ri′′jk) ≥

`−1∑
k=1

(rik+1jk+1
− rik+1jk). (3.7)

Then,

Vt(x− εeni + εeni′ ,y − εemj + εemj′ )− Vt(x,y)

≥
T∑
τ=t

γτ−t
∑
j′′∈S

ητj′′

`−1∑
k=1

(rik+1jk − rikjk) +
T∑
τ=t

γτ−t
∑
i′′∈D

ξτi′′

`−1∑
k=1

(rik+1jk+1
− rik+1jk)

=(
T∑
τ=t

γτ−t
∑
j′′∈S

ητj′′ −
T∑
τ=t

γτ−t
∑
i′′∈D

ξτi′′)
`−1∑
k=1

(rik+1jk − rikjk)

+
T∑
τ=t

γτ−t
∑
i′′∈D

ξτi′′ [
`−1∑
k=1

(rik+1jk − rikjk) +
`−1∑
k=1

(rik+1jk+1
− rik+1jk)]

=(
T∑
τ=t

γτ−t
∑
j′′∈S

ητj′′ −
T∑
τ=t

γτ−t
∑
i′′∈D

ξτi′′)
`−1∑
k=1

(rik+1jk − rikjk) +
T∑
τ=t

γτ−t
∑
i′′∈D

ξτi′′(ri`j` − ri1j1), (3.8)

where the first inequality is due to (3.5), (3.6) and (3.7). Moreover,

`−1∑
k=1

(rik+1jk − rikjk) = ri`j` − ri1j1 +
`−1∑
k=1

(rik+1jk − rik+1jk+1
) ≥ ri`j` − ri1j1 , (3.9)

where the inequality follows from the condition (ik+1, jk) � (ik+1, jk+1) that implies rik+1jk−rik+1jk+1
≥

0. Without loss of generality, let us assume
∑T
τ=t γ

τ−t∑
j′′∈S η

τ
j′′ ≥

∑T
τ=t γ

τ−t∑
i′′∈D ξ

τ
i′′ . Then,

Vt(x− ε1eni + ε1e
n
i′ ,y − ε2emj + ε2e

m
j′ )− Vt(x,y)

≥
T∑
τ=t

γτ−t
∑
j′′∈S

ητj′′(ri`j` − ri1j1) ≥
T∑
τ=t

∑
j′′∈S

ητj′′(ri`j` − ri1j1)

≥ ε1(ri`j` − ri1j1) ≥ ε(ri`j` − ri1j1) = ε(ri′j′ − rij),
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where the first inequality is due to (3.8), (3.9) and the assumption that
∑T
τ=t γ

τ−t∑
j′′∈S η

τ
j′′ ≥∑T

τ=t γ
τ−t∑

i′′∈D ξ
τ
i′′ , and the remaining inequalities are due to ri`j` = ri′j′ ≤ rij = ri1j1 implied

by (i, j) � (i′, j′). The first inequality can be shown similarly for the case
∑T
τ=t γ

τ−t∑
j′′∈S η

τ
j′′ <∑T

τ=t γ
τ−t∑

i′′∈D ξ
τ
i′′ , with (3.8) rewritten in terms of (

∑T
τ=t γ

τ−t∑
i′′∈D ξ

τ
i′′−

∑T
τ=t γ

τ−t∑
j′′∈S η

τ
j′′). �

Proof of Theorem 3.2. We prove this theorem by induction on t. For t = T + 1, it is obvious that

the result holds. Suppose that the result holds for period t+ 1. We show that it also holds for period t.

Now consider period t ≤ T . Without loss of generality, we can assume that both xi and yj are

positive in period t. Otherwise if xi = 0 or yj = 0, the result clearly holds because the only feasible

choice for qij is zero and thus q∗ij = 0 = min{xi, yj}.

Fix any (x,y) > 0. Suppose that in the optimal matching policy Q∗, q∗ij < min {xi, yj}. It is sufficient

to show that there exists ε > 0 such that an alternative matching plan Q̄, in which q̄ij = q∗ij + ε, weakly

dominates Q∗. In other words, the firm can improve weakly by matching ε more of type i demand and

type j supply.

One of the following scenarios must hold for the post-matching quantities u∗i and v∗j : Case (i) u∗i > 0

and v∗j > 0; Case (ii) u∗i = 0 and v∗j > 0, or u∗i > 0 and v∗j = 0; Case (iii) u∗i = 0 and v∗j = 0. The

ideas of constructing a weakly dominating policy for cases (i) and (iii) are representative, which will be

repetitively used later to prove the global priority structure (see Theorem 3.1).

Case (i): u∗i > 0 and v∗j > 0. We choose ε > 0 such that u∗i − ε > 0 and v∗j − ε > 0. Consider an

alternative matching plan Q̄ = Q∗ + εen×mij , which is clearly feasible. Then,

Ht(Q̄,x,y)−Ht(Q
∗,x,y)

=rijε+ (h+ c)ε+ γEVt+1(αu∗ + D− αεeni , βv∗ + S− βεemj )− γEVt+1(αu∗ + D, βv∗ + S). (3.10)

If t = T , then Ht(Q̄,x,y)−Ht(Q
∗,x,y) = rijε+ (h+ c)ε ≥ 0.

If t < T , then by the induction hypothesis, in period t + 1, the optimal quantity to match between

type i demand and type j supply is q∗ij(t+ 1) = min {xi(t+ 1), yj(t+ 1)}. Consider the case β ≥ α. It

is easy to see that

Vt+1(αu∗ + D− αεeni , βv∗ + S− βεemj ) = Vt+1(αu∗ + D + (β − α)εeni , βv∗ + S)− βεrij , (3.11)

because of the greedy matching of pair (i, j) for the subsequent periods.

Now compare two systems that start in period t+ 1 with the states (αu∗+ D + (β−α)εeni , βv∗+ S)

and (αu∗ + D, βv∗ + S), respectively. The former system has the option of holding the additional

amount (β−α)ε of type i demand and mimicking the optimal matching policy of the latter system from

period t + 1 to period T . In this way, the former system incurs the extra cost c(β − α)ε
∑T−t
τ=0 α

τγτ ≤
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c(β − α)ε/(1− αγ) ≤ cε. That is,

Vt+1(αu∗ + D + (β − α)εeni , βv∗ + S) ≥ Vt+1(αu∗ + D, βv∗ + S)− cε. (3.12)

Then, combining (3.10), (3.11) and (3.12), we have

Ht(Q̄,x,y)−Ht(Q
∗,x,y)

≥rijε+ (h+ c)ε− γβεrij + γEVt+1(αu∗ + D + (β − α)εeni , βv∗ + S)− γEVt+1(αu∗ + D, βv∗ + S)

≥rijε+ (h+ c)ε− γβεrij − γcε ≥ 0,

which demonstrates that Q̄ weakly dominates Q∗. Similarly, we can reach the same conclusion if α > β.

Case (ii): Suppose that u∗i > 0 and v∗j = 0. By Theorem 3.1, under the conditions that (i, j) � (i′, j)

for all i′ ∈ D, we know that q∗i′j = 0 for any i′ ∈ D and i′ 6= i. Then, 0 = v∗j = yj −
∑n
i′=1 q

∗
i′j = yj − q∗ij .

Thus, q∗ij = yj ≥ min{xi, yj}, implying that q∗ij = min{xi, yj} because q∗ij ≤ min{xi, yj}.

Similarly, we can prove q∗ij = min{xi, yj}, if u∗i = 0 and v∗j > 0.

Case (iii): u∗i = v∗j = 0. Assume q∗ij < min {xi, yj}. Then, there must exist j′ 6= j and i′ 6= i such

that q∗ij′ > 0 and q∗i′j > 0. We choose ε > 0 such that q∗i′j − ε > 0 and q∗ij′ − ε > 0 and define Q̄ as Q̃ =

Q∗+ ε(en×mij +en×mi′j′ −en×mi′j −en×mij′ ). The decision Q̄ is feasible, because Q̄ ≥ 0 and the post-matching

levels of Q̄ are the same as that of Q∗. Then, Ht(Q̄,x,y)−Ht(Q
∗,x,y) = ε(rij + ri′j′ − ri′j − rij′) ≥ 0,

implying that Q̄, in which q̄ij = q∗ij + ε, weakly dominates Q∗. Following the same argument, we can

always find an optimal decision Q̄ in which q̄ij = min {xi, yj}. �

Proof of Theorem 3.3 For any matrix (aij)i∈D,j∈S , we rewrite ai· =
∑
j∈S aij and a·j =

∑
i∈D aij .

We first the following lemma.

Lemma 3.4 For a matching decision Q = (qij)i∈D,j∈S that may not be feasible for the state (x′,y′) in

period t, we can find a matching decision Q′′ = (qij − δij − δ′ij)i∈D,j∈S feasible for (x′,y′), such that

δij ≥ 0 and δ′ij ≥ 0 for all i ∈ D and j′ ∈ S,
∑
j′∈S δij′ = (qi·− x′i)+, and

∑
i′∈D δ

′
i′j = (q·j − δ·j − y′j)+.

Proof of Lemma 3.4 For an i ∈ D and an arbitary permutation (j1, . . . , jm) of S, we let δij1 =

min{(qi·−x′i)+, qij1}, δij2 = min{(qi·−x′i)+−δij1 , qij2}, . . ., δijk = min{(qi·−x′i)+−
∑k−1
`=1 δij` , qijk}, . . .,

δijm = min{(qi·−x′i)+−
∑m−1
`=1 δij` , qijm}. It is easy to show that (qi·−x′i)+−

∑m−1
`=1 δij` = (qijm−x′i)+ ≤

qijm . Thus δijm = (qi· − x′i)+ −
∑m−1
`=1 δij` , which implies that

∑
j′∈S δij′ =

∑m
`=1 δij` = (qi· − x′i)+.

Let q′ij = qij − δij for all j ∈ S. Then,
∑
j′∈S q

′
ij′ =

∑
j′∈S qij′ −

∑
j′∈S δij′ = qi· −

∑
j′∈S δij′ =

qi· − (qi· − x′i)+ = min{qi·, x′i} ≤ x′i.

Next, for j ∈ S and a permutation (i1, . . . , in) of D, we let δ′i1j = min{(q′·j − y′j)+, q′i1j}, . . ., δ
′
ikj

=

min
¶

(q′·j − y′j)+ −
∑k−1
`=1 δ

′
i`j
, qqikj′

©
, . . ., δ′inj = min{(q′·j−y′j)+−

∑n−1
`=1 δ

′
i`j
, qinj′}, and q′′i′j = q′i′j− δ′i′j

for all i′ ∈ D. Again, we can show that
∑n
`=1 δ

′
i`j

= (q′·j − y′j)+ and that
∑
i′∈D q

′′
i′j = q′·j −

∑n
`=1 δ

′
i`j

=
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min{q′·j , y′j} ≤ y′j . Therefore, Q′′ = (q′′ij)i∈D,S is a feasible decision with the desired properties. �

From a solution {q̂ijt}i∈D,j∈S,t=τ,...,T to the problem (Px,y
τ ) under the initial state (x,y), we construct

a feasible policy {q̃ijt}i∈D,j∈S,t=τ,...,T , which we call policy M, from period τ to T as follows.

Step 1 Let t← τ . Define x̃iτ = xiτ = xi, ỹjτ = yjτ = yj and q̃ijτ = q̂ijτ for all i ∈ D, j ∈ S;

Step 2 Let t← t+ 1. Moreover,

• x̃it = α(x̃i,t−1 −
∑
j′∈S q̃ij′) +Dit, ỹjt = β(ỹj,t−1 −

∑
i′∈D q̃i′j) + Sjt;

• Construct {δijt, δ′ijt}i∈D,j∈S as in Lemma 3.4, a feasible decision Q̃t =
(
q̂ijt − δijt − δ′ijt

)
i∈D,j∈S

for the state (x̃t, ỹt) in period t;

• Go to Step 2 if t < T ; stop if t = T .

The following lemma bounds the gap between V detτ (x,y), the optimal value of the deterministic

model, and Ṽτ (x,y), the value under policy M in the stochastic system.

Lemma 3.5 We have

0 ≤ V detτ (x,y)− Ṽτ (x,y) ≤
∑
i∈D

(max
j∈S

rij)
t∑

t′=τ+1

E(λit′ −Dit′)
+ +

∑
j∈S

(max
i∈D

rij)
t∑

t′=τ+1

E(µjt′ − Sjt′)+

+ c
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

E(µjt′ − Sjt′)+ + c
T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ+1

αt−t
′
E(Dit′ − λit′)+

+ h
T∑
t=τ

γt−τ
∑
i′∈D

t∑
t′=τ+1

E(λit′ −Dit′)
+ + h

T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

βt−t
′
E(Sjt′ − µjt′)+.

Proof of Lemma 3.5 We have

ûit − ũit =(x̂it − q̂i·,t)− (x̃it − q̃i·,t) = (x̂it − x̃it)− q̂i·,t + q̃i·,t = (x̂it − x̃it)−
∑
j′∈S

(δij′t + δ′ij′t),

and

x̂i,t+1 − x̃i,t+1 = α(ûit − ũit) + λi,t+1 −Di,t+1 =α(x̂it − x̃it)− α
∑
j′∈S

δij′t − α
∑
j′∈S

δ′ij′t + λi,t+1 −Di,t+1

≤α[(x̂it − x̃it)+ −
∑
j′∈S

δij′t] + λi,t+1 −Di,t+1

≤(x̂it − x̃it)+ −
∑
j′∈S

δij′t + λi,t+1 −Di,t+1, (3.13)

where the last inequality holds because
∑
j′∈S δij′t = (q̂i·t − x̃it)+ ≤ (x̂it − x̃it)+ by Lemma 3.4.

We now show by induction that (x̂it − x̃it)+ ≤ −
∑t−1
t′=τ

∑
j′∈S δij′t′ +

∑t
t′=τ+1(λit′ − Dit′)

+. The
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inequality holds for t = τ as x̂iτ = x̃iτ = xiτ . Suppose it also holds for a certain t. By (3.13) we have

(x̂i,t+1 − x̃i,t+1)+ ≤(x̂it − x̃it)+ −
∑
j′∈S

δij′t + (λi,t+1 −Di,t+1)+

≤−
t−1∑
t′=τ

∑
j′∈S

δij′t′ +
t∑

t′=τ+1

(λit′ −Dit′)
+ −

∑
j′∈S

δij′t + (λi,t+1 −Di,t+1)+

=−
t∑

t′=τ

∑
j′∈S

δij′t′ +
t+1∑

t′=τ+1

(λit′ −Dit′)
+,

which completes the induction.

It follows that
∑
j′∈S δij′t = (q̂i·− x̃it) ≤ (x̂it− x̃it)+ ≤ −

∑t−1
t′=τ

∑
j′∈S δij′t′+

∑t
t′=τ+1(λit′−Dit′)

+,

or equivalently,

t∑
t′=τ

∑
j′∈S

δij′t′ ≤
t∑

t′=τ+1

(λit′ −Dit′)
+. (3.14)

Analogously, we can show that

t∑
t′=τ

∑
i′∈D

δ′i′jt′ ≤
t∑

t′=τ+1

(µjt′ − Sjt′)+. (3.15)

Moreover,

x̃i,t+1 − x̂i,t+1 =α(x̃it − x̂it) + α
∑
j′∈S

δij′t + α
∑
j′∈S

δ′ij′t +Di,t+1 − λi,t+1

=α(x̃it − x̂it) + α(q̂i· − x̃it)+ + α
∑
j′∈S

δ′ij′t +Di,t+1 − λi,t+1

≤α(x̃it − x̂it) + α(x̂it − x̃it)+ + α
∑
j′∈S

δ′ij′t +Di,t+1 − λi,t+1

=α(x̃it − x̂it)+ + α
∑
j′∈S

δ′ij′t +Di,t+1 − λi,t+1.

Then (x̃i,t+1 − x̂i,t+1)+ ≤ α(x̃it − x̂it)+ + α
∑
j′∈S δ

′
ij′t + (Di,t+1 − λi,t+1)+. By induction we have

(x̃it − x̂it)+ ≤
t−1∑
t′=τ

αt−t
′ ∑
j′∈S

δ′ij′t′ +
t∑

t′=τ+1

αt−t
′
(Dit′ − λit′)+.

Then,

ũit − ûit = (x̃it − x̂it) +
∑
j′∈S

δi′jt +
∑
j′∈S

δ′ij′t ≤(x̃it − x̂it) + (x̂it − x̃it)+ +
∑
j′∈S

δ′ij′t

=(x̃it − x̂it)+ +
∑
j′∈S

δ′ij′t
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≤
t∑

t′=τ

αt−t
′ ∑
j′∈S

δ′ij′t′ +
t∑

t′=τ+1

αt−t
′
(Dit′ − λit′)+. (3.16)

Likewise we can prove

ṽjt − v̂jt ≤
t∑

t′=τ

βt−t
′ ∑
i′∈D

δi′jt′ +
t∑

t′=τ+1

βt−t
′
(Sjt′ − µjt′)+. (3.17)

Finally,

V det
τ (x,y)− Ṽτ (x,y)

=
T∑
t=τ

γt−τ
∑

i∈D,j∈S
rij q̂ijt −

T∑
t=τ

γt−τ (c
∑
i∈D

ûit + h
∑
j∈S

v̂it)

− E
T∑
t=τ

γt−τ
∑

i∈D,j∈S
rij q̃ijt + E

T∑
t=τ

γt−τ (c
∑
i∈D

ũit + h
∑
j∈S

ṽjt)

=E
T∑
t=τ

γt−τ
∑

i∈D,j∈S
rij(q̂ijt − q̃ijt) + cE

T∑
t=τ

γt−τ
∑
i∈D

(ũit − ûit) + hE
T∑
t=τ

γt−τ
∑
j∈S

(ṽjt − v̂jt)

=E
T∑
t=τ

γt−τ
∑

i∈D,j∈S
rij(δijt + δ′ijt) + cE

T∑
t=τ

γt−τ
∑
i∈D

(ũit − ûit) + hE
T∑
t=τ

γt−τ
∑
j∈S

(ṽjt − v̂jt)

≤E

∑
i∈D

(max
j∈S

rij)
T∑
t=τ

∑
j∈S

δijt +
∑
j∈S

(max
i∈D

rij)
T∑
t=τ

∑
i∈D

δ′ijt


+ cE

T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ

αt−t
′ ∑
j′∈S

δ′ij′t′ + cE
T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ+1

αt−t
′
(Dit′ − λit′)+

+ hE
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ

βt−t
′ ∑
i′∈D

δi′jt′ + hE
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

βt−t
′
(Sjt′ − µjt′)+

≤
∑
i∈D

(max
j∈S

rij)
t∑

t′=τ+1

E(λit′ −Dit′)
+ +

∑
j∈S

(max
i∈D

rij)
t∑

t′=τ+1

E(µjt′ − Sjt′)+

+ c
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

E(µjt′ − Sjt′)+ + c
T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ+1

αt−t
′
E(Dit′ − λit′)+

+ h
T∑
t=τ

γt−τ
∑
i′∈D

t∑
t′=τ+1

E(λit′ −Dit′)
+ + h

T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

βt−t
′
E(Sjt′ − µjt′)+,

where the first inequality follows from (3.16) and (3.17), and the second one from (3.14) and (3.15). �

Let Ṽ kτ (x,y) be the value function under policy M in system k. The next lemma investigates the

performance of policy M as and the resolving heuritic in stochastic system k.

Lemma 3.6 We have [V
det(k)
τ (x,y) − Ṽ kτ (x,y)]/k = O(1/

√
k) and [V kτ (x,y) − V resolve(k)

τ (x,y)]/k =

O(1/
√
k) uniformly for all (x,y).
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Proof of Lemma 3.6 To prove the first inequality, we obtain from Lemma 3.5 that

V det(k)
τ (x,y)− Ṽ kτ (x,y)

≤
∑
i∈D

(max
j∈S

rij)
t∑

t′=τ+1

E[kλit′ −Dit′(k)]+ +
∑
j∈S

(max
i∈D

rij)
t∑

t′=τ+1

E[kµjt′ − Sjt′(k)]+

+ c
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

E[kµjt′ − Sjt′(k)]+ + c
T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ+1

αt−t
′
E[Dit′(k)− kλit′ ]+

+ h
T∑
t=τ

γt−τ
∑
i′∈D

t∑
t′=τ+1

E[kλit′ −Dit′(k)]+ + h
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

βt−t
′
E[Sjt′(k)− µjt′ ]+.

By the central limit theorem, (Dit′(k) − kλit′)/
√
k

d→ N(0, σ2
d,it′) and (Sjt′(k) − kµit′)/

√
k

d→

N(0, σ2
s,jt′), where σd,it′ and σs,jt′ are the standard deviations of Dit′ and Sjt′ , respectively. Hence

lim sup
k→∞

V
det(k)
τ (x,y)− Ṽ kτ (x,y)√

k
= lim sup

k→∞

V
det(k)
τ (x,y)− Ṽ kτ (x,y)√

k

≤
∑
i∈D

(max
j∈S

rij)
t∑

t′=τ+1

EX−it′ +
∑
j∈S

(max
i∈D

rij)
t∑

t′=τ+1

EY −jt′

+ c
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

EY −jt′ + c
T∑
t=τ

γt−τ
∑
i∈D

t∑
t′=τ+1

αt−t
′
EX+

it′

+ h
T∑
t=τ

γt−τ
∑
i′∈D

t∑
t′=τ+1

EX−it′ + h
T∑
t=τ

γt−τ
∑
j∈S

t∑
t′=τ+1

αt−t
′
EY +

jt′ ,

where Xit′ ∼ N(0, σ2
d,it′) and Yjt′ ∼ N(0, σ2

s,jt′). This implies that [V
det(k)
τ (x,y) − Ṽ kτ (x,y)]/k =

O(1/
√
k), and the convergence is uniform for all (x,y).

We prove the second inequality by induction. We have [V kT (x,y) − V
resolve(k)
T (x,y)]/k = 0 as in

period T we have a deterministic problem for even the stochastic system. Suppose that [V kt+1(x,y) −

V
resolve(k)
t+1 (x,y)]/k = O(1/

√
k) uniformly for all (x,y).

Consider a matching policy D1 that applies {q̂ijt}i∈D,j∈S from solving (Px,y
t ) in period t but uses

the optimal decisions from period t+ 1 on. Let V̄ kt (x,y) be the total expected discounted reward minus

cost in system k from period t to period T under this policy. Policy D1 coincides with policy M and the

resolving heuristic in period as they both solve (Px,y
t ). From period t + 1, policy D1 would dominate

the other two by definition. Thus

0 ≤V̄ kt (x,y)/k − V resolve(k)
t (x,y)/k

=γEV kt+1(αu + Dt, βv + St)/k − γEV resolve(k)
t+1 (αu + Dt, βv + St)/k = O(

1√
k

), (3.18)

where u and v are the post-matching levels in period t, when the matching decision suggested by (Px,y
τ )



www.manaraa.com

Chapter 3. Dynamic Type Matching: The General Framework 70

is used in that period.

Because V kt (x,y) ≤ V det(k)
t (x,y) and V̄ kτ (x,y) ≥ Ṽ kτ (x,y), we have

0 ≤ V kt (x,y)/k − V̄ kτ (x,y)]/k ≤ V det(k)
t (x,y)/k − Ṽ kτ (x,y)]/k = O(

1√
k

). (3.19)

Combining (3.18) and (3.19) we have

0 ≤ V kt (x,y)− V resolve(k)
t (x,y)

k
=V kt (x,y)/k − V̄ kτ (x,y)]/k + V̄ kt (x,y)/k − V resolve(k)

t (x,y)/k = O(
1√
k

),

which completes the induction. �

Finally, one can show that V kτ (x,y) = kVτ (x/k,y/k), and thus limk→∞ V kτ (x,y)/k = limk→∞ Vτ (x/k,y/k) =

Vτ (0,0). As a result, [V kt (x,y)−V resolve(k)(x,y)]/V kt (x,y) =
{

[V kt (x,y)− V resolve(k)(x,y)]/k
}
/
[
V kt (x,y)/k

]
=

O(1/
√
k). �
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Chapter 4

Dynamic Type Matching:

Horizontal and Vertical Types

4.1 Introduction

In this chapter, we revisit the model (3.1) in Chapter 3, with more specific forms of matching reward

structure. In particular, we study the following two cases of the general reward structure: unidirectionally

horizontal types and vertical types. For these two reward structures, all neighboring pairs of demand

and supply types are shown to be comparable (i.e., one dominating the other) under the modified Monge

partial order, and priority is determined in an intuitive way: in the horizontal case, “distance” determines

priority for matching a supply/demand type with different demand/supply types, and in the vertical

case, “quality” determines priority. We follow the notation introduced in in Chapter 3.

Unidirectionally horizontal types. We assume that demand and supply types are located on a

line or a circle. The unidirectional “distance” between a demand type and a supply type is the distance

one travels unidirectionally along the line or circle from the location of the supply type to that of the

demand type. The reward for matching two locations decreases linearly in their “distance.” Using the

general priority properties, we verify that it is optimal to match as much as possible the two that are

closest to each other. Moreover, there exists a priority hierarchy in matching imperfect pairs. For

any given demand (or supply) type, the closer its distance to a supply (or demand) type, the higher

the priority to match the closer pair.1 As a result, the optimal matching policy has a match-down-to

structure: along the priority matching hierarchy, for a pair of demand and supply types, there exist

state-dependent thresholds, with those for perfect pairs all equal to zero; if demand and supply levels

are higher than the thresholds, they should be matched down to the thresholds; otherwise, they should

1Unfortunately, these results on priority, determined by distances, in general fail to hold if the “distance” is the shortest
distance. As a result, one should not optimistically expect a general priority structure to hold for those situations.
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not be matched.

Vertical types. Each demand or supply type is associated with a quality, and generates a higher

reward if matched with a supply or demand type of a higher quality. In particular, we assume the reward

of matching a pair is the sum of the contributions brought in by its components, which are increasing in

quality. Then the optimal matching policy follows a simple structure, which we call top-down matching

(in an economic term, assortative mating): line up demand types and supply types in descending order

of their “quality” from high to low; match them from the top, down to some level. Thus, the optimal

matching policy in any period can be fully determined by a total matching quantity. Moreover, we can

take a dynamic perspective on the optimal matching policy: as in the case of horizontal types, in the

top-down matching procedure there are match-down-to levels (or equivalently, some protection levels)

for any pair of demand and supply types. When demand and supply have the same carry-over rate, we

show, by verifying the L\-concavity of the value functions of a transformed problem, that the optimal

total matching quantity (from the aggregate perspective) or the optimal protection levels (from the

dynamic perspective) have monotonicity properties with respect to the system state: An increment in

the level of a demand or supply type with higher “quality” leads to a higher optimal matching quantity

or lower protection levels.

The two cases with unidirectionally horizontal types and with vertical types apply to many emerging

settings and also include many existing problems as special cases.

In particular, the case of unidirectionally horizontal types has the following applications:

Capacity management with upgrading. Upgrading uses a high-class supply to fulfill a low-

class demand, which is widely adopted in the business practice, e.g., in travel industries (see, e.g., Yu

et al. 2015) and in production/inventory settings (see, e.g., Bassok et al. 1999). Shumsky and Zhang

(2009) study a revenue management problem with fixed initial capacities of various supply types, and

demand types can only be upgraded one level higher. Yu et al. (2015) study a revenue management

problem with fixed initial capacities of various supply types, and demand types can be upgraded to be

matched with a higher-quality supply type. The upgrading reward structure in Yu et al. (2015) is a

special case of unidirectionally horizontal types located along a line. Thus our results are applicable to

a generalized capacity management problem with general upgrading and random replenishment. The

feature of random supply is desirable for upgrading, even for those revenue management settings, not to

mention for the production/inventory settings. For example, in car rental, car returns can be random

and in airline ticket selling, early cancellations or airplane swaps can result in random capacity changes.

Carpooling/load matching along a fixed route. Roadie, an online platform, aims to entice

college students and other travelers to earn extra pocket money by delivering large, long-haul items

on the way to where they are already going. Platforms such as uShip and Cargomatic feed loads to

independent truck drivers along their way. Carpooling platforms such as UberPool match riders heading

to the same destination (or in the same direction). In those cases, the matching reward has two additive
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components: The first one is a disutility associated with the distance traveled along the fixed route

from the driver’s current location to pick up the demand.2 The second is a utility associated with

traveling along the route from the demand’s pick-up location to its drop-off location. The former is the

unidirectionally horizontal case, whereas the latter is a vertically differentiated attribute, because given

the same pick-up location, it is more desirable if the demand’s travel distance is longer. We show that

if riders and drivers head to the same destination at the end of the route3, a shorter distance to pick up

a rider on the way has a higher priority in matching (see Section 4.2.2).

Type mating. A common feature of many manufacturing processes is the mating of two halves to

produce a final product. For a flat panel display, the two halves are “active” and “passive” layers of an

electronic display. For a ball bearing, the two halves are an inner race and outer race. The location of

defects on each half can be examined and the mating of the two that have defects at the same locations

generates the highest value. Duenyas et al. (1997) is the first to study this dynamic type mating problem.

They assume that one unit of a demand and a supply type arrives in each period, and solves for the

optimal mating policy that minimizes the long-run average cost. Baccara et al. (2016) study a similar

problem but compare the centralized model with the decentralized model. Our model with horizontal

types generalizes Duenyas et al. (1997) and Baccara et al. (2016) by accounting for arbitrary patterns

of demand and supply arrivals.

The case of vertical types has the following ramifications and applications:

Assortative mating. In an empirical study of the centralized medical residency assignment, Agar-

wal (2015) assumes a simplified “double-vertical” model in which both the residents and programs have a

(preference) utility function that is linear in observable traits of types on the other side. As a result, the

matching reward for a pair is in the additive form, as assumed in the case of vertical types. The additive

reward form is a special case of supermodular reward functions. For a one-shot setting, a supermodular

reward function guarantees assortative mating as a stable matching. That is, high-quality demands are

matched with high-quality supplies and low-quality demands with low-quality supplies, and types not

matched to each other could not be mated without making at least one of them worse off. Surprisingly,

this self-centric assortative mating behavior is also optimal for the centralized planner (Becker 2009,

p.114). We show that in a dynamic setting, with the additive reward function, it is optimal for the

centralized planner to perform top-down matching, i.e., assortative mating, up to some level, and save

the rest for future. This result provides the following insights for a dynamic matching market: First, if

the reward function is a general supermodular function other than an additive one, there exist scenarios

in which socially efficient matching is not assortative (which seems not revealed before; see Li 2008 for

a survey). This phenomenon happens only if the waiting/holding costs are moderate. This is because,

in one extreme when the waiting and holding costs are sufficiently high, the intermediary prefers greedy

2A little detour can be allowed but tends to be negligible.
3In a press release on the launching of UberPool, Uber revealed that “on any given day, the vast majority of uberX

trips in NYC have a ‘lookalike’ trip—a trip that starts near, ends near, and is happening around the same time as another
trip”; see https://newsroom.uber.com/us-new-york/vision-for-the-future-1m-fewer-cars-on-the-road/.

https://newsroom.uber.com/us-new-york/vision-for-the-future-1m-fewer-cars-on-the-road/
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matching within the current period, and assortative mating would emerge, and in the other extreme

when the waiting/holding costs are close to zero, the intermediary prefers to hold up the matching until

the last period with a bigger pool, and again assortative mating would emerge. Second, it may not

be efficient to exhaust all demand and supply types at a given time. As a result, a centralized dating

agency, or even a decentralized dating website, may want to limit the number of matching pairs at any

time, in anticipation of future arrivals of better-quality men and women.

Inventory management with substitution. Consider that a firm sells a line of vertically differen-

tiated products to multiple demand classes. Customers with their class is known to the firm are flexible

with substitution, but is only willing to pay more for a higher-class product or will be compensated

for a lower-class product, based on their class. The resulting reward function is in an additive form.

Our results on vertical types are readily applicable to this dynamic inventory management setting with

substitution and random supply.

Inventory rationing. The literature of inventory rationing considers inter-temporal inventory

allocation of a single supply type across multiple demand types (see, e.g., Evans 1968, Veinott 1965, Ha

1997a,b and de Véricourt et al. 2002). Demand from the less valuable types can be rejected given possible

future arrivals of demand from the more valuable types. The case of vertical types generalizes the idea of

inventory rationing by considering multiple supply types (with exogenously random replenishment) and

multiple demand types with general abandonment rates, whereas the literature considers one supply type

(though with endogenized ordering/production decisions) and fully backlogged or lost demand types.

4.2 Horizontally Differentiated Types

In this section, we first consider the model with demand and supply types that are horizontally differ-

entiated in the sense that each type has its own heterogeneous “taste.”

4.2.1 The Directed Line Segment, Directed Circle and Undirected Line Seg-

ment

We assume that the n demand and m supply types are distributed on a fixed route C (e.g. a line

segment) with a given direction. All the demand types have distinct locations (otherwise we can simply

treat two demand types sharing the same location as the same type) and so do the supply types. For

any two types t1, t2, we write t1 → t2 to denote that t1 is located before t2, along the given direction.

We denote by ~d(t1, t2) the travel distance from the location of t1 to that of t2 along the given direction.

The unit matching reward rij between type i demand and type j supply is a nonincreasing function

of the distance between the two types, which is measured as follows. For i ∈ D and j ∈ S such that

j → i, we define dij = ~d(j, i). For i ∈ D and j ∈ S such that i → j, we consider one of the following

definitions:
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(i) (Directed line segment) dij = N , where N is an arbitrarily large number;

(ii) (Directed circle) dij = |C| − ~d(i, j), where |C| is the length of the route C;

(iii) (Undirected line segment) dij = ~d(i, j).

In case (i), a supply type is not allowed to travel counter to the given direction. In this case, C is a

directed line segment, on which i ∈ D and j ∈ S can be matched with each other if and only if j → i.

The product upgrading model has the structure of a directed line segment.4 Figure 4.1 illustrates such

a model that allows general upgrading (see Yu et al. 2015).

L	 H	

Supply	

Demand	

Figure 4.1: Product upgrade

In case (ii), a type j supply can travel along the given direction to reach a type i demand if j → i. If

i→ j, j needs to travel to the end of the route along the given direction, then “reappears” at the origin

of the route and continues along the direction to reach i. This is equivalent to the case in which C is a

directed (say, clockwise) circle and a supply type always needs to go clockwise on the circle to reach a

demand type.

In case (iii), a supply type can go along or counter to the direction to reach a demand type. Thus

the direction no longer plays a role and C is equivalent to an undirected line segment.

As mentioned, the unit matching reward can be written as rij = f(dij), where f is a nonincreasing

function of the distance. If f takes a linear form, we can characterize the priorities in the optimal

matching policy. The economic interpretation of a linear function f is that the reward rij from matching

type i demand with type j supply is obtained from a base matching reward r0 minus the mismatch cost

proportional to the distance between type i demand and type j supply.

For i ∈ D and j ∈ S, let
←−−
(i, j) denote the segment of the route traveled by j to reach i. The

following result shows the travel distance can imply the modified Monge partial order, hence implying

the matching priority, in the light of Theorem 3.1.

Theorem 4.1 (Distance-based priority) Suppose f is a linear and decreasing function.

(i) If
←−−
(i, j) ⊆

←−−−
(i, j′), then (i, j) � (i, j′). Similarly, if

←−−
(i, j) ⊆

←−−−
(i′, j), then (i, j) � (i′, j).

4The model in Yu et al. (2015) corresponds to an incomplete bipartite network. While our base model considers
a complete bipartite network structure, our results can be extended to the case where only a subset of the arcs are
permissible.
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(ii) In the case of undirected line segment, if
←−−
(i, j) ⊆

←−−−
(i′, j′) and

←−−
(i, j) has the same direction with

←−−−
(i′, j′), then (i, j) � (i′, j′).

(iii) In the case of directed line segment and circle,
←−−
(i, j) ⊆

←−−−
(i′, j′) is equivalent to (i, j) � (i′, j′).

Proof of Theorem 4.1. (i) Without loss of generality, suppose that rij = f(dij) = r0 − dij . The

condition
←−−
(i, j) ⊆

←−−−
(i, j′) implies that dij′ = dij + ~d(j′, j). Then, rij − rij′ = ~d(j′, j).

For any i′ ∈ D, ri′j − ri′j′ = di′j′ − di′j . To verify condition (D), it suffices to show that ri′j − ri′j′ ≤

rij−rij′ , which is equivalent to di′j′ ≤ di′j+ ~d(j′, j) following the above arguments. The latter inequality

is simply the triangular inequality. The other half can be proved analogously.

(ii) In the case of undirected line segment, if
←−−
(i, j) ⊆

←−−−
(i′, j′) and

←−−
(i, j) has the same direction with

←−−−
(i′, j′), we have

←−−
(i, j) ⊆

←−−−
(i, j′) ⊆

←−−−
(i′, j′). By part (i), (i, j) � (i, j′) � (i′, j′).

(iii) If
←−−
(i, j) ⊆

←−−−
(i′, j′), since

←−−
(i, j) has the same direction with

←−−−
(i′, j′) is automatically satisfied for the

directed line segment and directed circle, by part (ii), we have (i, j) � (i′, j′).

It remains to show that (i, j) � (i′, j′) implies
←−−
(i, j) ⊆

←−−−
(i′, j′). Suppose (i, j) � (i′, j′). We can assume

without loss of generality that (i, j) = (i1, j1) � (i1, j2) � (i2, j2) � · · · � (i`, j`) = (i′, j′). By definition

of the partial order, (i1, j1) � (i1, j2) implies ri1j1 ≥ ri1j2 , thus di1j1 ≤ di1j2 . In either the directed line

segment case or the directed circle case, this suggests
←−−−−
(i1, j1) ⊆

←−−−−
(i1, j2). Repeating this argument we get

←−−−−
(i1, j1) ⊆

←−−−−
(i1, j2) ⊆

←−−−−
(i2, j2) ⊆ · · · ⊆

←−−−
(il, jl). Thus

←−−
(i, j) ⊆

←−−−
(i′, j′). �

The next result shows that for the directed line segment and the directed circle, each demand or

supply type should be matched in a greedy fashion with its closest match.

Theorem 4.2 (Greedy match of perfect pairs) Consider the directed line segment case or the directed

circle case. Suppose that
←−−
(i, j) does not contain any other types than themselves. If f is nonincreasing

and convex, q∗ij = min{xi, yj}.

Proof of Theorem 4.2. If
←−−
(i, j) does not contain any types other than i and j themselves, then

←−−
(i, j) ⊆

←−−−
(i′, j′) for any compatible pair (i′, j′) (in the case of directed line segment, we require j′ → i′; otherwise

the arc (i′, j′) is “incompatible”). By Theorem 4.1 part (iii), (i, j) � (i′, j′). In particular, (i, j) � (i, j′)

and (i, j) � (i′, j) for any i′ ∈ D and j′ ∈ S. By Theorem 3.2, i ∈ D and j ∈ S should be matched with

each other as much as possible. �

Given the analysis in this section so far, there exists an optimal hierarchy for the cases of the directed

line segment and circle with linear reward functions. The optimal matching decision in a period can be

characterized by state-dependent protection levels aij(t, ·, ·) defined in a matching procedure as follows.

To start with, let k = 1, (x1,y1) = (x,y) and Q∗ = 0n×m. Also, we represent the set of arcs that

have not been matched yet by Ā. Initially, Ā = A.

Step 1. For each arc (i, j) ∈
{

(i′′, j′′) ∈ Ā | @(i′, j′) ∈ Ā such that (i′, j′) 6= (i′′, j′′) and
←−−−
(i′, j′) ⊆

←−−−−
(i′′, j′′)

}
(i.e., (i, j) is undominated in Ā), we do the following.
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Step 1.1. Match type i demand with type j supply until their remaining unmatched quantities reach

(xki − ykj )+ + aij(t,x
k,yk) and (xki − ykj )− + aij(t,x

k,yk) respectively. Remove (i, j) from Ā.

Set q∗ij = xki − (xki − ykj )+ − aij(t,xk,yk).

Step 1.2. If aij(t,x
k,yk) > 0, then set q∗i′j′ = 0 and remove (i′, j′) from Ā for all (i′, j′) 6= (i, j) such

that
←−−
(i, j) ⊆

←−−−
(i′, j′).

Step 2. Update the state vectors: xk+1 = x − 1m(Q∗)T, yk+1 = y − 1nQ∗. Increase k by 1. Go back to

Step 1 if Ā is nonempty, and stop otherwise.

The above procedure performs matching in a priority sequence, where k is the priority level. At a

priority level k, the post-matching levels of type i demand and type j supply (right after the matching in

Step 1) will be (xki−ykj )++aij(t,x
k,yk) and (xki−ykj )−+aij(t,x

k,yk) respectively. The level aij(t,x
k,yk)

is the amount we would like to protect from matching. If aij(t,x
k,yk) > 0, all arcs strictly dominated by

(i, j) will have zero matching quantities due to the priority structure (see Step 1.2). When k = 1, each

arc (i, j) chosen in Step 1 is undominated by any (i′, j′) ∈ A, meaning that type i demand and type j

supply will be matched as much as possible. Thus, aij(t,x
1,y1) = 0 for all such (i, j). Another property

of aij(t,x
k,yk) is that it depends on xki and ykj only through their difference, xki − ykj . This is because,

if an arc (i, j) is ever selected in Step 1, the decision Q∗ under the state (x,y) will lead to exactly the

same post-matching levels as the decision Q∗ + εen×mij under the state (x + εeni ,y + εemj ). Since the

total current-period rewards are linear in matching quantities, one can easily verify that Q∗ + εen×mij

will satisfy the first-order optimality conditions under the state (x + εeni ,y + εemj ) if Q∗ does so under

the state (x,y). Consequently, Q∗+ εen×mij is optimal for the state (x + εeni ,y + εemj ) and has the same

protection levels as Q∗.

4.2.2 Additional Attribute

Consider an alternative reward function rij = f(dij) + rai . The nonincreasing function f(dij) represents

the reward associated with “traveling” by the type j supply to “reach” the type i demand, and rai

represents the additional reward related to the attribute of type i demand, e.g., the reward related to

the traveling between pickup and drop-off locations of a customer. For this reward function, the same

condition in part (i) of Theorem 4.1,
←−−
(i, j) ⊆

←−−−
(i, j′), is sufficient for (i, j) � (i, j′). Then Theorem 3.1

would imply that in car sharing, for a given rider, a driver who is closer on the way should have a higher

priority to be matched with that rider than another driver who is farther away. Moreover, in order for

(i, j) � (i′, j), it suffices to require f(dij) + rai ≥ f(di′j) + rai′ in addition to
←−−
(i, j) ⊆

←−−−
(i′, j). To make

implications of this result for carpooling, we caution a gap between the reality in which carpool drivers

may drop off and pick up customers along the way and our implicit assumption that matched supply
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and demand would leave the system5 (or the driver may come back but not in a way correlated with

the current matching decisions). Under the assumption that a matched pair would leave the system,

our result implies that for a given driver, if a rider is closer and has a longer travel distance, that rider

should have a higher priority to be matched, as compared to another rider who is farther and has a

shorter travel distance.

Commuting patterns of many cities indicate that drivers and riders often share the same destination.

For example, the commuting pattern in the mornings of weekdays in New York City shows that com-

muters travel from different suburban areas in the same direction to the city.6 In this case, the closer a

rider to a driver, as they all go to the same destination, the higher the additional reward rai earned after

pickup. Hence, with the same-destination assumption, we can recover the same characterization of the

optimal priority structure as Theorem 4.1(iii), for the alternative reward function rij = f(dij) + rai .

Proposition 4.1 Suppose that all supply and demand types are located on a directed line segment. Let

e be the end point of that line segment, and that rai = g(~d(i, e)) for all i ∈ D, where g is a linear and

nondecreasing function. With rij = f(dij) + rai , where f is linear and nonincreasing, (i, j) � (i′, j′) is

equivalent to
←−−
(i, j) ⊆

←−−−
(i′, j′).

Proof of Proposition 4.1. First, we show that (i, j) � (i′, j) if
←−−
(i, j) ⊆

←−−−
(i′, j). If

←−−
(i, j) ⊆

←−−−
(i′, j), then i′

must be closer to the end point e, which leads to rai ≥ rai′ . Thus rij = f(dij) + rai ≥ f(di′j) + rai′ = ri′j ,

given that
←−−
(i, j) ⊆

←−−−
(i′, j). To verify Condition (D), we can use the fact that rij+ri′j′ = f(dij)+f(di′j′)+

rai +rai′ ≥ f(dij′)+f(di′j)+rai +rai′ , where the inequality holds because f(dij)+f(di′j′) ≥ f(dij′)+f(di′j)

that has been already proved in Theorem 4.1 part (i). Similarly, we can show that (i′, j) � (i′, j′) if
←−−−
(i′, j) ⊆

←−−−
(i′, j′). Then, for

←−−
(i, j) ⊆

←−−−
(i′, j′), we have (i, j) � (i′, j) � (i′, j′).

The same analysis as that of Theorem 4.1 part (iii) will show that
←−−
(i, j) ⊆

←−−−
(i′, j′) if (i, j) � (i′, j′). �

4.2.3 The Model with 2 Supply Types and 2 Demand Types

Next we sharpen the characterization of the optimal matching policy for the model with two demand

and supply types, in which demand type i has the same location as supply type i, for i = 1, 2. Here,

the types can be located on the directed line segment, directed circle, or undirected line segment. Let

{i,−i} = {1, 2} for i = 1, 2.

Observation 4.1 For the 2-to-2 horizontal model, (i, i) � (i,−i) and (i, i) � (−i, i) for i = 1, 2.

This is because we have rii ≥ max{ri,−i, r−i,i} for i = 1, 2 (as long as f is nonincreasing function)

even with dij defined as the shortest distance along the circle. As a result, by verifying the definition of

the modified Monge partial order, it is easy to see that (1, 1) � (1, 2), (1, 1) � (2, 1), (2, 2) � (2, 1) and

(2, 2) � (1, 2) hold. By Theorem 4.2, type i demand and type i supply, i = 1, 2, should be matched as

much as possible. The matching in a period will stop if both supply types or both demand types are

5A driver who has multiple seats may still offer unmatched supply in the market.
6http://bigbytes.mobyus.com/commute.aspx

http://bigbytes.mobyus.com/commute.aspx
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exhausted after being matched with their perfect match. Otherwise, it remains to decide the matching

quantity between type i demand and type −i supply if they have positive quantities left.

Theorem 4.3 (2-to-2 horizontal model: optimal matching policy) Fix an arbitrary period t. For any

(x,y), define the type-specific demand and supply imbalance ηi ≡ xi − yi for i = 1, 2, and the aggregate

imbalance η ≡ η1 + η2. The following matching procedure is optimal: for i = 1, 2,

(i) Round 1 (Greedy matching for the perfect pair): match type i demand and supply as much as

possible, i.e., q∗ii = min {xi, yi}.

(ii) Round 2 (“Match down to” policy for the imperfect pair): if xi > yi and x−i < y−i, then q∗−i,i = 0

and match the imperfect pair of type i demand and type −i supply down to post-matching levels

u∗i = η+ + a∗i (t, η) and v∗−i = η− + a∗i (t, η) respectively, where a∗i (t, η) = min{āi(t, η), ηi − η+} and

āi(t, η) is some protection level. Otherwise, q∗i,−i = 0.

Proof of Theorem 4.3. By Observation 4.1 and Theorem 4.2, it is optimal to match the perfect pair

as much as possible; that is done in the first round. Next we consider after round 1 how to match the

imperfect pairs (1, 2) and (2, 1).

If x1 ≥ y1 and x2 ≥ y2 or x1 ≤ y1 and x2 ≤ y2, it is obvious that q∗12 = q∗21 = 0. Consider the case

where x1 > y1 and x2 < y2. (The same argument applies to the case where x1 < y1 and x2 > y2.) After

round 1, the remaining quantities for type 1 demand and type 2 supply is x1 − y1 > 0 and y2 − x2 > 0

respectively. There is no remaining unmatched type 2 demand and type 1 supply, and thus q∗21 = 0.

It remains to determine the optimal matching quantity q∗12, which is equivalent to determining some

optimal protection level a∗1(t,x,y). To see this, note that η+ and η− would be the unmatched type

1 demand and type 2 supply remaining after the imperfect pair (1, 2) has been matched as much as

possible, where η = η1 + η2 = (x1 − y1)− (y2 − x2). When the protection level is a1, the post-matching

levels of type 1 demand and type 2 supply are u1 = η+ + a1 and v2 = η− + a1, respectively. The

protection level needs to satisfy the nonnegativity constraint a1 ≥ 0 and ensure the matching quantity

q12 = η1 − u1 = η1 − η+ − a1 ≥ 0, resulting in a1 ≤ η1 − η+. After Round 1, the cost-to-go function can

be written in terms of the protection level a1 as:‹Ht(a1,x,y) =r11y1 + r22x2 + r12(η1 − η+ − a1)− c(η+ + a1)− h(η− + a1)

+ γEVt+1

(
α(η+ + a1) +D1, D2, S1, β(η− + a1) + S2

)
=r11y1 + r22x2 + r12(η1 − η+)− cη+ − hη− + Ĥt(a1, η),

where

Ĥt(a1, η) = −(r12 + c+ h)a1 + γEVt+1

(
α(η+ + a1) +D1, D2, S1, β(η− + a1) + S2

)
(4.1)

depends on (x,y) only through η. The optimal protection level a∗1 solves max0≤a1≤η1−η+ Ĥt(a1, η). As
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with the proof of Proposition 3.1, it is easy to show that Ĥt(a1, η) is concave in a1. Thus, the optimal

protection level a∗1(t,x,y) = a∗1(t, η) = min{ā1(t, η), η1−η+}, where ā1(t, η) ∈ arg maxa1≥0 Ĥt(a1, η). �

Theorem 4.3 shows the structure of the optimal matching policy for the 2-to-2 horizontal model. In

the first round of matching, type i demand is matched as much as possible with its most favorable match,

type i supply. After that, if we matched the imperfect pair, type i demand and type −i supply, to the

full extent, then the post-matching levels of type i demand and type −i supply would become η+ and

η− respectively. The optimal matching quantity is characterized by the state-dependent protection level

āi(t, η): the amount āi(t, η) is protected from being matched between type i demand and type −i supply

so that they are saved for the possible arrival of their perfect match in future periods. The match-down-

to levels for type i demand and type −i supply after the second round of matching are η+ + āi(t, η) and

η− + āi(t, η) respectively. The matching of the imperfect pair has a match-down-to structure: If the

quantity of type i demand, ηi = xi − yi, after the first round of matching is greater than the match-

down-to level η+ + āi(t, η), then it is optimal to match the imperfect pair and bring the quantity of type i

demand down to the level η+ +āi(t, η) (and simultaneously, that of type −i supply down to η−+āi(t, η)).

Otherwise, type i demand and type −i supply will not be matched. This structure is analogous to many

threshold-type structures in the inventory literature, e.g., the celebrated base-stock policy. Moreover,

the match-down-to levels only depend on the aggregated discrepancy between total demand and supply

across two types. In other words, the match-down-to levels depend on the 4-dimensional state (x,y)

only through a scalar η. We can obtain a further state collapse in the protection levels for the imperfect

matching when the unmatched demand or supply is lost after the matching in each period is done.

Corollary 4.1 (2-to-2 horizontal model with lost demand or supply) Suppose that xi > yi and x−i <

y−i. If α = 0, there exists a constant v̂−i(t) such that the optimal matching quantity between type i

demand and type −i supply is q∗i,−i = η−−i−max
{
v̂−i(t) ∧ η−−i, η−

}
. If β = 0, there exists ûi(t) such that

is q∗i,−i = η+
i −max

{
ûi(t) ∧ η+

i , η
+
}

.

Proof of Corollary 4.1. Consider the case in which x1 ≥ y1 and x2 ≤ y2. If α = 0, in the proof

of Theorem 4.3, (4.1) reduces to Ĥt(a1, η) = −(r12 + c + h)a1 + γEVt+1 (D1, D2, S1, β(η− + a1) + S2) .

To optimize the protection level a1 is equivalent to optimizing the post-matching level v2 = η− + a1

of supply type 2. Let v̂2(t) ∈ arg maxv2≥0−(r12 + c + h)v2 + γEVt+1(D1, D2, S1, βv2 + S2), which is

independent of η. Since 0 ≤ a1 ≤ η1 − η+, η− ≤ v2 = η− + a1 ≤ η−2 . Then, v∗2 = max{v̂2(t) ∧ η−2 , η−},

a∗1(t, η) = v∗2 − η− = [v̂2(t) ∧ η−2 − η−]+ and q∗12 = η−2 − v∗2 = η−2 −max
{
v̂2(t) ∧ η−2 , η−

}
. Analogously,

we can show the desired result for β = 0. �

Corollary 4.1 says that if all the unmatched demand is lost, then the second-round matching reduces

the quantity of type −i supply as close as possible to a threshold v̂−i(t), which is independent of η.

Intuitively, because all the unmatched demand is lost and the post-matching level of supply type i has

to be 0 after Round 1 of matching, the intermediary only cares about how much of supply type −i to

carry to the next period. This results in a constant protection level for supply type −i for the current
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period. Similarly, if all the unmatched supply is lost, then the optimal matching policy reduces the

quantity of type i demand as close as possible to the threshold ûi(t).

4.3 Vertically Differentiated Types

In this section, we consider vertically differentiated demand and supply types. Each demand or supply

type is associated with a “quality” and generates a higher reward if it is matched with a supply or

demand type of a higher quality. Specifically, we consider an additive form of the reward structure: for

all 1 ≤ i ≤ n and 1 ≤ j ≤ m, rij = rdi + rsj , where rdi (or rsj ) can be understood as the quality of type i

demand (or type j supply). Without loss of generality, we index the types such that rd1 > · · · > rdn and

rs1 > · · · > rsm. Agarwal (2015) assumes such an additive reward structure.

With the additive reward structure, rij + ri′j′ = rij′ + ri′j for all i, i′ ∈ D and j, j′ ∈ S. This implies

that for two neighboring arcs, (i, j) � (i′, j) if and only if rdi ≥ rdi′ , and (i, j) � (i, j′) if and only if

rsj ≥ rsj′ . This observation can easily be generalized as (i, j) � (i′, j′) if and only if i < i′ and j < j′.

By Theorem 3.2, it is optimal to match type 1 demand and type 1 supply in a greedy fashion. From

Theorem 3.1, the arc (i, j) has priority over (i, j′) and (i′, j) for all j′ > j and i′ > i. This leads to an

optimal policy that follows a top-down matching procedure (see Figure 4.2 for an illustration):

Corollary 4.2 (Top-down matching) Line up demand types and supply types separately in increasing

order of their indices. Match from the top, down to some level. The optimal matching decision Q in a

period is fully determined by a total matching quantity Q
def
=
∑n
i′=1

∑m
j′=1 qi′j′ .

		1	 	1	

		2	 	1	

		2	 	2	

		2	 	2	

		3	 	2	

		3	 	2	

		4	 	3	

		4	

Figure 4.2: Line up, match up (to a “match-down-to” level).

Once Q is known, we can recover the matching matrix Q as follows: Starting with i = 1 and j = 1,

we match type i demand with type j supply until one of them is fully matched or the total matching

quantity reaches Q. If type i demand (or type j supply) is fully matched, we increase i (or j) by 1. Then
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we repeat the above steps until the total matching quantity finally reaches Q.

For ease of notation we define the following transformed state variables: x̃i
def
=

∑i
i′=1 xi′ for

1 ≤ i ≤ n, ỹj
def
=
∑j
j′=1 yj′ for 1 ≤ i ≤ m, and x̃0 ≡ ỹ0 ≡ 0. If x̃i−1 ≤ Q ≤ x̃i and ỹj−1 ≤ Q ≤ ỹj , then

types 1, . . . , i− 1 demand and types 1, . . . , j− 1 supply are fully matched, an amount Q− x̃i−1 of type i

demand is matched with some supply, and an amount Q− ỹj−1 of type j supply is matched with some

demand. The rest of the types with quality lower than type i on the demand side and lower than type

j on the supply side will not be matched in this period. The unmatched amount of type i′ demand is

(x̃i′ −Q)+ − (x̃i′−1 −Q)+, where the first term is the unmatched amount of demand in types 1, . . . , i′,

and the second term is the unmatched amount of demand in types 1, . . . , i′ − 1. Thus a total amount of

xi′ − [(x̃i′ −Q)+ − (x̃i′−1 −Q)+] of type i′ demand is matched with some supply in period t. Similarly,

an amount yj′ − [(ỹj′ −Q)+ − (ỹj′−1 −Q)+] of type j′ supply is matched with some demand in period

t. Thus, the total reward from matching in period t is

n∑
i′=1

rdi′
{
xi′ − [(x̃i′ −Q)+ − (x̃i′−1 −Q)+]

}
+

m∑
j′=1

rsj′
{
yj′ − [(ỹj′ −Q)+ − (ỹj′−1 −Q)+]

}
=

n∑
i′=1

rdi′xi′ +
m∑
j′=1

rsj′yj′ −
n∑

i′=1

(
rdi′ − rdi′+1

)
(x̃i′ −Q)+ −

m∑
j′=1

(
rsj′ − rsj′+1

)
(ỹj′ −Q)+,

where rdn+1 = rsm+1 ≡ 0. The post-matching levels of demand and supply are given by ui′ = vj′ = 0 for

i′ < i and j′ < j, ui = x̃i−Q, vj = ỹj−Q, u[i+1,n] = x[i+1,n] = (xi+1, . . . , xn) and v[j+1,m] = y[j+1,m] =

(yj+1, . . . , ym). Then we can rewrite the DP (3.1) as the following DP with a single decision variable Q:

Vt(x,y) = max
0≤Q≤min{x̃n,ỹm}

Gt(Q,x,y),

Gt(Q,x,y) =
n∑

i′=1

rdi′xi′ +
m∑
j′=1

rsj′yj′ −
n∑

i′=1

(
rdi′ − rdi′+1

)
(x̃i′ −Q)+ −

m∑
j′=1

(
rsj′ − rsj′+1

)
(ỹj′ −Q)+

− c(x̃n −Q)− h(ỹm −Q) + γEVt+1(αu + D, βv + S), (4.2)

where rdn+1 = rsm+1 ≡ 0, u = (0i−1, x̃i − Q,x[i+1,n]) and v = (0j−1, ỹj − Q,y[j+1,m]) if x̃i−1 ≤ Q < x̃i

and ỹj−1 ≤ Q < ỹj .

Lemma 4.1 Gt(Q,x,y) is concave in Q.

Proof of Lemma 4.1. It is easy to see that Gt is concave in Q within the interior of the ranges

x̃i−1 ≤ Q < x̃i and ỹj−1 ≤ Q < ỹj . Without loss of generality, we assume x̃i ∈ (ỹj−1, ỹj). We show

that Gt is concave in the neighborhood of a breakpoint a = x̃i. To this end, it suffices to show that

Gt(a + ε,x,y) −Gt(a,x,y) ≤ Gt(a,x,y) −Gt(a − ε,x,y), where 0 < ε < min{x̃i − ỹj−1, ỹj − x̃i}. Let

u = (0i,x[i+1,n]) and v = (0j−1, ỹj − x̃i,y[j+1,m]). We have

Gt(a,x,y)−Gt(a− ε,x,y)
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=(rdi + rsj + c+ h)ε+ γEVt+1(αu + D, βv + S)− γEVt+1(αu + αεeni + D, βv + βεemj + S)

≥(rdi + rsj + c+ h)ε− γα(rdi − rdi+1)ε

+ γEVt+1(αu + D, βv + S)− γEVt+1(αu + αεeni+1 + D, βv + βεemj + S),

where the inequality follows from Lemma 3.2 (set ε2t to zero) and the fact that −
∑m
j′=1 λj′(rij′−ri′j′) =

−
∑m
j′=1 λj′(r

d
i − rdi′) ≥ −(rdi − rdi′)αε if

∑m
j′=1 λj′ ≤ αε. On the other hand, we have

Gt(a+ ε,x,y)−Gt(a,x,y)

=(rdi+1 + rsj + c+ h)ε+ γEVt+1(αu− αεeni+1 + D, βv − βεemj + S)− γEVt+1(αu + D, βv + S).

Since γ, α ∈ [0, 1] and rdi ≥ rdi+1, (rdi + rsj + c + h)ε − γα(rdi − rdi+1)ε ≥ (rdi + rsj + c + h)ε − (rdi −

rdi+1)ε = (rdi+1 + rsj + c + h)ε. Then, by the concavity of Vt+1(·) (see Proposition 3.1), it follows that

Gt(a+ ε,x,y)−Gt(a,x,y) ≤ Gt(a,x,y)−Gt(a− ε,x,y). �

By Lemma 4.1, the optimal matching decisions in a period become a one-dimensional convex op-

timization problem. The following result sharpens the optimal policy characterization. To facilitate

the presentation, define xi = xi − (ỹj−1 − x̃i−1)+ as the available quantity of type i demand before

we consider its matching with type j supply, and xi = (x̃i − ỹj)+ as the remaining quantity of type i

demand after we match it with type j supply as much as possible. We define yj and y
j

similarly.

Theorem 4.4 (Vertical model: optimal matching procedure) Consider vertically differentiated types. In

the top-down matching procedure, consider matching type i demand with type j supply, which is opti-

mal only if all types 1, . . . , i − 1 demand and types 1, . . . , j − 1 supply have been fully matched, and

x̃i > ỹj−1 and x̃i−1 < ỹj. There exists a protection level a∗ij(t) depending on (x̃i − ỹj ,x[i+1,n],y[j+1,m])

such that it is optimal to match type i demand with type j supply until the level of type i demand re-

duces to (x̃i − ỹj)
+ + a∗ij(t) if xi − xi > a∗ij(t) (or equivalently, the level of type j supply reduces to

(ỹj − x̃i)+ + a∗ij(t) if yj − yj > a∗ij(t)), and otherwise not to match type i demand with type j supply.

Proof of Theorem 4.4. Take the dynamic view of the top-down matching procedure and consider the

scenario when it gets to the matching of type i demand and type j supply. The available amount of type

i demand is xi
def
= xi − (ỹj−1 − x̃i−1)+ and that of type j supply is yj

def
= yj − (x̃i−1 − ỹj−1)+. If type

i demand and type j supply were matched as much as possible, after the matching the amount of type

i demand would become xi
def
= (x̃i − ỹj)+ and that of type j supply would become y

j

def
= (ỹj − x̃i)+.

Note that we have xi − xi = xi − (ỹj−1 − x̃i−1)+ − (x̃i − ỹj)+ = yj − (ỹj−1 − x̃i−1)− − (x̃i − ỹj)− =

yj − (x̃i−1 − ỹj−1)+ − (ỹj − x̃i)
+ = yj − y

j
, where the second equality is due to xi − yj = (ỹj−1 −

x̃i−1) + (x̃i − ỹj) and z = z+ − z−, and the third equality is due to (−z)− = z+. Thus, determining the

optimal matching quantity between type i demand and type j supply is equivalent to finding the optimal

protection level a∗ij(t), with which the post-matching levels are u∗i = xi + a∗ij(t) = (x̃i − ỹj)+ + a∗ij(t)

and v∗j = y
j

+ a∗ij(t) = (ỹj − x̃i)+ + a∗ij(t).



www.manaraa.com

Chapter 4. Dynamic Type Matching: Horizontal and Vertical Types 84

Let a∗ij(t, x̃i− ỹj ,x[i+1,n],y[j+1,m]) ∈ arg maxa≥0

[
− (rdi + rsj + c+h)a+ γEVt+1(D[1,i−1], α(xi +a) +

Di, αx[i+1,n] + D[i+1,n],S[1,j−1], β(y
j

+ a) + Sj , βy[j+1,m] + S[j+1,m])
]
.

If xi− xi = xi− (ỹj−1− x̃i−1)+− (x̃i− ỹj)+ > a∗ij(t), then it is feasible and optimal to match type i

demand with type j supply until the quantity of type i demand reduces to xi+a
∗
ij(t) = (x̃i−ỹj)++a∗ij(t).

Otherwise, it is optimal not to match type i demand with type j supply. �

When we come to the decision on matching type i demand with type j supply in the top-down

procedure, how much to match is determined by the optimal protection level a∗ij(t). If it is nonzero, the

matching procedure would terminate after the matching of type i demand with type j supply; all lower

quality types of demand and supply would not be matched. One managerial insight is that higher types

tend to be matched in the current period to realize higher immediate reward and lower types with lower

“overstocking” costs tend to be saved as safety stock for the future.

Next we consider 3 special cases of the vertical model for which we obtain more structural results.

4.3.1 Equal Carry-Over Rates

We now consider the case in which demand and supply have the same carry-over rate, i.e., α = β, for

which we can further demonstrate monotonicity properties of the optimal matching policy with respect

to the system state. To proceed, we define D̃i
def
=
∑i
i′=1Di′ and S̃j

def
=
∑j
j′=1 Sj′ for 1 ≤ i ≤ n and

1 ≤ j ≤ m. We define Uk as the k × k upper triangular matrix with all the entries on or above the

diagonal equal to one. Then the state transformation can be written in a matrix form: xUn = x̃ and

yUm = ỹ. Also, let Ṽt(x̃, ỹ)
def
= Vt(x̃U−1

n , ỹU−1
m )− x̃U−1

n (rd)T − ỹU−1
m (rs)T.

U−1
k is a k×k upper-triangular difference matrix that has all diagonal entries equal to 1, (l, l+ 1)-th

entry equal to −1 for all l = 1, 2, k−1 and all other entries equal to 0. With some algebra we can rewrite

the DP (4.2) in terms of the value functions Ṽt and the state variables x̃ and ỹ for t = 1, . . . , T :

Ṽt(x̃, ỹ) = max
0≤Q≤min{x̃n,ỹm}

G̃t(Q, x̃, ỹ),

G̃t(Q, x̃, ỹ) = −(1− γα)
n∑

i′=1

(rdi′ − rdi′+1)(x̃i′ −Q)+ − (1− γα)
m∑
j′=1

(rsj′ − rsj′+1)(ỹj′ −Q)+ − c(x̃n −Q)

− h(ỹm −Q) + γD̃U−1
n (rd)T + γS̃U−1

m (rs)T + γEṼt+1(α(x̃−Q1n)+ + D̃, α(ỹ −Q1m)+ + S̃). (4.3)

Lemma 4.2 For all t, Ṽt(x̃, ỹ) is decreasing in x̃k for 1 ≤ k < n and in ỹk for 1 ≤ k < m.

Proof of Lemma 4.2. By Lemma 3.2 (set ε2t = 0), there exists (λ1, . . . , λm) ≥ 0 such that
∑m
j′=1 λj′ ≤

ε and

Vt(x,y)− Vt(x + εeni − εeni′ ,y) =Vt((x + εeni − εeni′)− εeni + εeni′ ,y)− Vt(x + εeni − εeni′ ,y)

≥−
m∑
j′=1

λj′(rij′ − ri′j′) = −
m∑
j′=1

λj′(r
d
i − rdi′).



www.manaraa.com

Chapter 4. Dynamic Type Matching: Horizontal and Vertical Types 85

If i < i′, then rdi > rdi′ and Vt(x,y) − Vt(x + εeni − εeni′ ,y) ≥ −
∑m
j′=1 λj′(r

d
i − rdi′) ≥ −(rdi − rdi′)ε.

Then, for 1 ≤ k < n, we have

Ṽt(x̃ + εenk , ỹ)− Ṽt(x̃, ỹ)

=Vt((x̃ + εenk )U−1
n , ỹU−1

m )− Vt(x̃U−1
n , ỹU−1

m )− (x̃ + εenk )U−1
n (rd)T − x̃U−1

n (rd)T

=Vt(x + εenk − εenk+1,y)− Vt(x,y)− (rdk − rdk+1)ε ≤ 0.

Thus, Ṽt(x̃, ỹ) is decreasing in x̃k for 1 ≤ k < n. Similarly, Ṽt(x̃, ỹ) is decreasing in ỹk for 1 ≤ k < m. �

To proceed further on the monotonicity properties of the optimal matching policy, we make use of

the notion of L\-concavity. A function f : Rn → R is called L\-convex if f(x − ξ1n) is submodular in

(x, ξ) (see Murota 2003). A function g is L\-concave if −g is L\-convex.

Lemma 4.3 Suppose α = β. Ṽt(x̃, ỹ) is L\-concave in (x̃, ỹ) for t = 1, . . . , T + 1, and G̃t(Q, x̃, ỹ) is

L\-concave in (Q, x̃, ỹ) for t = 1, . . . , T .

Proof of Lemma 4.3. The proof is by induction on t. Clearly, ṼT+1(x̃, ỹ) ≡ 0 is L\-concave in

(x̃, ỹ). We suppose that Ṽt+1(x̃, ỹ) is L\-concave in (x̃, ỹ). Then by definition of L\-concavity and

submodularity, for any given D̃ and S̃, Ṽt+1(αx̃ + D̃, αỹ + S̃) is L\-concave in (x̃, ỹ). Now consider

period t. Since Q ≤ min{x̃n, ỹm} and α = β, We have that Ṽt+1(α(x̃−Q1n)+ + D̃, α(ỹ−Q1m)+ + S̃) =

Ṽt+1(α(x̃[1,n−1]−Q1n−1)+ +D̃[1,n−1], α(x̃n−Q)+D̃n, α(ỹ[1,m−1]−Q1m−1)+ +S̃[1,m−1], α(ỹm−Q)+S̃m)

is L\-concave in (Q, x̃, ỹ), by applying Chen et al. (2014, Lemma 4) and noting the monotonicity proved

in Lemma 4.2. By Simchi-Levi et al. (2014, Proposition 2.3.4(c)), ED̃,S̃[Ṽt+1(α(x̃ −Q1n)+ + D̃, α(ỹ −

Q1m)++S̃)] is L\-concave in (Q, x̃, ỹ), thus the last term in (4.3) is L\-concave in (Q, x̃, ỹ). The first two

terms in (4.3) are L\-concave in (Q, x̃, ỹ), because −(x̃i′ −Q)+ is supermodular in (Q, x̃i′), −(ỹj′ −Q)+

is supermodular in (Q, ỹj′) and L\-concavity is preserved under any nonnegative linear combination.

Since the other terms are linear, G̃t(Q, x̃, ỹ) is L\-concave in (Q, x̃, ỹ). By Simchi-Levi et al. (2014,

Proposition 2.3.4(e)), Ṽt(x̃, ỹ) is L\-concave in (x̃, ỹ). This completes the induction. �

With the value functions in the transformed system proven to be L\-concave, we obtain the following

monotonicity properties of the optimal matching policy for the original system.

Theorem 4.5 (Vertical model: monotonicity property of optimal total matching quantity) Suppose α =

β. The optimal total matching quantity Q∗t (x,y) is nondecreasing in (x,y) and satisfies that, for ε > 0,

(i) Q∗t (x + εen1 ,y + εem1 ) = Q∗t (x,y) + ε,

(ii) 0 ≤ Q∗t (x + εenn,y)−Q∗t (x,y) ≤ Q∗t (x + εenn−1,y)−Q∗t (x,y) ≤ · · · ≤ Q∗t (x + εen1 ,y)−Q∗t (x,y) ≤ ε,

(iii)0 ≤ Q∗t (x,y + εemm)−Q∗t (x,y) ≤ Q∗t (x,y + εemm−1)−Q∗t (x,y) ≤ · · · ≤ Q∗t (x,y + εem1 )−Q∗t (x,y) ≤ ε.

Proof of Theorem 4.5. Monotonicity of Q∗t (x,y). Since L\-concavity implies supermodularity, by

Lemma 4.3, G̃t(Q, x̃, ỹ) is L\-concave, a fortiori, supermodular in (Q, x̃, ỹ). By Simchi-Levi et al. (2014,
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Theorem 2.2.8), the optimal solution to (4.3), denoted by Q̂t(x̃, ỹ), is nondecreasing in (x̃, ỹ). Since the

higher the original state (x,y), the higher the transformed state (x̃, ỹ), the optimal solution Q∗t (x,y),

expressed in terms of the original state, is nondecreasing in (x,y).

(i) Note that (x + εen1 ,y + εem1 ) is a state that has ε more type 1 demand and supply than state

(x,y), and it is optimal to match type 1 demand and supply as much as possible; thus after the first

round of matching type 1 demand and supply, there are the same levels of the remaining types for the

system with state (x + εen1 ,y + εem1 ) and with state (x,y). Thus the optimal matching decisions for the

remaining types must be the same for the two states, and as a result, Q∗t (x+εen1 ,y+εem1 ) = Q∗t (x,y)+ε.

(ii) By the definition of L\-concavity, G̃t(Q − ξ, x̃ − ξ1n, ỹ − ξ1m) is supermodular in (Q, x̃, ỹ, ξ).

Then, for Q > Q̂t(x̃, ỹ) + ε, we have

G̃t(Q, x̃ + ε1n, ỹ + ε1m)− G̃t(Q̂t(x̃, ỹ) + ε, x̃ + ε1n, ỹ + ε1m) ≤ G̃t(Q− ε, x̃, ỹ)− G̃t(Q̂t(x̃, ỹ), x̃, ỹ) ≤ 0,

where the first inequality is derived by definition of supermodularity and the second inequality is due

to the optimality of Q̂t. This implies that any matching quantity Q > Q̂t(x̃, ỹ) + ε is no better than

Q̂t(x̃, ỹ) + ε for the state (x̃ + ε1n, ỹ + ε1m). Therefore, Q̂t(x̃ + ε1n, ỹ + ε1m) ≤ Q̂t(x̃, ỹ) + ε. By the

monotonicity of Q̂t(x̃, ỹ), Q̂t(x̃+ε1n, ỹ) ≤ Q̂t(x̃+ε1n, ỹ+ε1m) ≤ Q̂t(x̃, ỹ)+ε. Expressed in the original

state, Q∗t (x + εen1 ,y) ≤ Q∗t (x,y) + ε, which proves the last inequality in part (ii).

For any two original states (x + εenk ,y) and (x + εenk+1,y), k = 1, . . . , n− 1, their transformed states

can be ordered as (x̃ + ε1[k,n], ỹ) ≥ (x̃ + ε1[k+1,n], ỹ), where 1[k,n] is an n-dimensional vector with the

k-th up to n-th entry being one and the rest of the entries being all zeros. By the monotonicity of

Q̂t(x̃, ỹ), Q̂t(x̃ + ε1[k,n], ỹ) ≥ Q̂t(x̃ + ε1[k+1,n], ỹ). Translated into the original state, Q∗t (x + εenk ,y) ≥

Q∗t (x + εenk+1,y) and thus, Q∗t (x + εenk+1,y) − Q∗t (x,y) ≤ Q∗t (x + εenk ,y) − Q∗t (x,y). Combining that

with Q∗t (x + εen1 ,y) ≤ Q∗t (x,y) + ε, we have the desired series of inequalities in part (ii), with the first

inequality implied by the monotonicity of Q∗t (x,y).

(iii) The series of inequalities can be proved analogously to part (ii). �

Theorem 4.5 provides first-order monotonicity properties of the optimal total matching quantity with

respect to the state for vertically differentiated types. First, the higher the levels of demand and supply,

the more quantities are optimally matched in a period. Second, part (i) is a direct consequence of

Theorem 3.2. It says if the levels of type 1 demand and supply are increased by the same amount, this

increased amount will be optimally matched between them in the current period. Third, the series of

inequalities (i.e., in parts (ii) and (iii)) show that an increment in the level of a demand or supply type

with higher “quality” leads to a higher optimal matching quantity, and the rate of increase is dominated

by 1. The statement is consistent with the intuition that higher types are more likely to be matched in

the current period. We caution that these results are obtained under the assumption of equal carry-over

rates; i.e., α = β. This is because these monotonicity properties are built upon the L\-concavity of the



www.manaraa.com

Chapter 4. Dynamic Type Matching: Horizontal and Vertical Types 87

value functions in the transformed system. Unlike concavity and supermodularity, L\-concavity depends

on the scaling of the variables (Zipkin 2008). (One may expect similar properties for unequal carry-over

rates, which may call for a novel form of concavity. We leave that to future research.)

The following corollary recounts Theorem 4.5 in terms of the state-dependent protection levels.

Corollary 4.3 (Vertical model: monotonicity property of optimal protection level) Suppose α = β. The

state-dependent protection level a∗ij(t, x̃i− ỹj ,x[i+1,n],y[j+1,m]) is nonincreasing in (x̃i− ỹj)+, (x̃i− ỹj)−,

x[i+1,n] and y[j+1,m], with the decreasing rates no more than 1. In particular, a∗11(t) ≡ 0. Moreover,

a∗ij(t) is most sensitive to x̃i − ỹj and is more sensitive to xi′ than to xi′+1 and to yj′ than to yj′+1 for

i+ 1 ≤ i′ ≤ n− 1 and j + 1 ≤ j′ ≤ m− 1.

4.3.2 Lost Demand or Supply

When β = 0, any unmatched supply does not carry over to the next period. Similarly, α = 0 means

that unmatched demand will be lost. By symmetry, we focus on the case in which β = 0.

Proposition 4.2 (Vertical model: lost supply) With a stronger assumption β = 0, Theorem 4.4 can be

strengthened as follows: In considering the matching of type i demand with type j supply, there exists a

state-dependent threshold θij(t,x[i+1,n]) such that it is optimal to reduce type i demand to θij(t,x[i+1,n])

if x̃i − ỹj < θij(t,x[i+1,n]) < x̃i − ỹj−1, to match it with type j supply down to the level x̃i − ỹj if

x̃i − ỹj ≥ θij(t,x[i+1,n]) and otherwise not to match type i demand and type j supply.

The proof is straightforward and omitted. Due to lost supply, the threshold θij(t,x[i+1,n]) that deter-

mines the matching between type i demand and type j supply has a lower-dimensional state dependency,

only depending on the time and states of all demand types of lower quality than the focal type i.

4.3.3 1 Demand Type and m Supply Types

We consider the model with only 1 demand type and m supply types. The next result immediately

follows from Theorem 4.4 (we omit its proof since it is straightforward).

Corollary 4.4 (1-to-m vertical model) With a stronger assumption of 1 demand type and m supply

types, Theorem 4.4 can be strengthened as follows: In considering the matching type 1 demand with type

j supply, there exists a threshold z̄j(t, x1− ỹj ,y[j+1,m]) such that it is optimal to reduce the type 1 demand

to min{z̄j(t, x1 − ỹj ,y[j+1,m]), x1 − ỹj−1} by matching it with type j supply.

In the vertical 1-to-m model, the single demand type is matched with supply types sequentially from

high quality to low quality. In considering its matching with type j supply, the remaining demand level

is x1− ỹj−1. There exists an optimal match-down-to level z̄j(t, x1− ỹj ,y[j+1,m]) such that it is optimal to

match the demand down to that level if the available demand is more than the level, and otherwise not

to match type 1 demand and type j supply as well as all the lower-quality supply types. Furthermore,

we provide conditions under which the optimal match-down-to levels become state-independent, which

can be computationally desirable.



www.manaraa.com

Chapter 4. Dynamic Type Matching: Horizontal and Vertical Types 88

Proposition 4.3 The optimal match-down-to level z̄j(t, x1 − ỹj ,y[j+1,m]) in the 1-to-m vertical model

becomes a constant, which is dependent on t but independent of x1− ỹj and y[j+1,m], if β = 0 or α = β.

Proof of Proposition 4.3. The result for β = 0 follows directly from Proposition 4.2. For α = β, the

result can be proved by applying the same approach as in Yu et al. (2015), thus we omit the details. �

We can obtain analogous results for the vertical model with n demand types and 1 supply type.

4.4 Conclusion

In this chapter, we study the dynamic type matching problem introduced in Chapter 3 with two reward

structures that satisfy the modified Monge condition for all neighboring pairs. For both reward struc-

tures, we characterize the structure of the optimal matching policy. In the unidirectionally horizontal

reward structure, “distance” determines priority, and in the vertical reward structure, “quality” deter-

mines priority. Under those two specialized reward structures, along the priority hierarchy, when it comes

to the matching between a specific pair, the optimal policy has a match-down-to threshold structure.

This structure connects back to the base-stock policy in inventory management and the protection-level

policy in quantity-based revenue management.

In addition to the above two reward structures, our results can also be applied to other forms of

reward structures to partially characterize the optimal matching policy in those settings. For example,

in a horizontal circle model, if we consider the shortest distance rather than the unidirectional distance, a

parallel version of Theorem 4.1 can be established. Suppose that rij is a linearly nonincreasing function

of the shortest distance. Then, we can verify by definition that (i, j) � (i′, j′), if (i) the shortest path

from i to j on the circle (i.e., the shorter circular segment between i and j) is a subset of the shortest

path from i′ to j′ and (ii) the shortest-distance travel from j to i is in the same direction as the shortest-

distance travel from j′ to i′. However, the two types i ∈ D and j ∈ S that are closest to each other

on the circle may not constitute a perfect pair anymore. In the vertical model, it is again verifiable

by definition that if rdi ≥ rsj ≥ rsj′ or rdi ≤ rsj ≤ rsj′ , then (i, j) � (i, j′) when rij = min
{
rdi , r

s
j

}
, and

(i, j′) � (i, j) when rij = max
{
rdi , r

s
j

}
.

Though those two reward structures include many classic and emerging problems as special cases,

many practical settings generally fail to satisfy the modified Monge condition. For example, in the

vertical model, if the reward function is a general supermodular function other than an additive one,

there exist scenarios in which socially efficient matching is not a top-down matching (i.e., assortative

mating). In the horizontal model, if the distance is the shortest distance, there exist scenarios in which

“matching-to-the-closest” greedily is not optimal. Characterizing the optimal matching policy for those

reward structures will be interesting but challenging. We leave that for future research.



www.manaraa.com

Chapter 5

Pricing Behaviors under Social

Incentives

5.1 Introduction

In the sharing economy, the intermediary platforms often use independent suppliers to provide service

to customers. Naturally, those independent suppliers are involved in competition with each other in

some way for customers. For example, the hosts on AirBnB compete with each other through pricing

strategies and quality of service. Research in psychology, sociology, and economics suggests that social

comparison has become increasingly important for understanding competitive behaviors of individuals

(Bellemare et al. 2008; Fehr and KM 1999; Iyer and Soberman 2016; Kahneman and Tversky 1979;

Kőszegi and Rabin 2006; Loewenstein et al. 1989). Individuals involved in sharing economy activities,

consumers, and even managers of firms in various industries, as human beings, naturally practice social

comparison. In addition, within a firm, social comparison behavior between agents can also be induced

or enforced internally by the firms by providing certain forms of incentives. For example, executive

bonuses or sales compensations often depend on how much a manager’s performance exceeds his/her

peers’ or the industry average (Cui et al. 2015; Ho and Su 2009; Lim 2010; Lim et al. 2009; Main et al.

1993). Inter-firm social comparison also exists, due to incentives from outside the firms, e.g., media

comparisons, third-party ranking, and most importantly, reception by investors. A top-performing firm

typically attracts investors with a large flow of capital, whereas a bottom performer can be severely

punished by the capital market.

There at least exists two forms social incentives that lead to comparison: behind aversion (or upward

social comparison), i.e., a feeling of loss when getting a worse outcome than other consumers or com-

petitors, and ahead seeking (or downward social comparison), i.e., a sense of achievement from obtaining

89
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a better outcome than others (Amaldoss and Jain 2008, 2010, 2015; Kuksov and Xie 2012).1 Social

comparison theory implies that enhanced competitiveness is a natural outcome of the social comparison

process (Garcia et al. 2013), regardless of the direction of social comparisons and the relative positions

of the decision makers. On the one hand, upward comparison by a person in an inferior position can

lead him/her to behave competitively in order to reduce discrepancies between him/her and the person

above. On the other hand, downward comparison by a person in a superior position can also lead to

competitive behavior in order to maintain his/her position, which may be threatened by an upward

comparison from below. Indeed, we confirm this theory in the canonical duopoly price competition of

differentiated substitutable products in a deterministic environment (Chen and Cui 2013; Narasimhan

1988; Singh and Vives 1984).

Today’s economy is no doubt filled with uncertainty. Can the insights obtained for a deterministic

environment be applicable to uncertain environments? In contrast to the existing social comparison

theory, we show how demand uncertainty changes the competitive landscape in the presence of social

comparison, where upward and downward comparisons play different roles. In particular, we consider

classic duopoly price competition between two agents in a random market environment. We show that the

more behind-averse managers are, the more intense price competition will be. Somewhat surprisingly,

the influence of ahead-seeking behavior by agents on profitability depends on the market variability:

more prominent ahead seeking behavior would reduce price competition if the market variability is large

enough but otherwise would intensify price competition.

Those results are due to the interplay of two effects – an expected -comparison effect and a variable-

inequality effect. Like social comparison theory, the expected-comparison effect captures the influence

of social comparison on competitive pricing decisions regardless of demand variability. As in a deter-

ministic environment, social comparison behavior, whether behind aversion or ahead seeking, always

intensifies price competition. In addition, the variable-inequality effect captures the effect of interac-

tions between social comparison and demand variability on competitive pricing decisions. Note that the

agents commit to a price ex ante subject to market variability. When ahead-seeking behavior becomes

more prominent, in deciding the committed price agents put more weights on those higher market re-

alizations. Since a bigger market warrants a higher price, the larger weight on more booming markets

reduces price competition. On the other hand, when behind aversion becomes more significant, agents

put more weights on those lower market realizations, thereby intensifying price competition. If the

market variability is large enough, the anti-competitive variable-inequality effect, which is induced by

more prominent ahead-seeking behavior, may dominate the pro-competitive expected-comparison effect.

Hence, counter-intuitively, ahead seeking leads to an overall anti-competitive outcome in a highly vari-

able market. On the other hand, behind aversion always leads to an overall pro-competitive outcome,

regardless of demand variability. It is such an interplay of both effects that leads to the counter-intuitive

1Another form is distributive fairness, i.e., a sense of sympathy for competitors when surpassing them (Fehr and KM
1999). Our model also accounts for this form of behavior.
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results in an environment with demand variability than without variability.

In addition, we also find that agents’ biased perceptions of market variability may also affect price

competition in an interesting way. More specifically, if managers overestimate the market variability

facing their competitors, such a biased belief can reduce price competition. That is because the variable-

inequality effect is influenced in different ways by the agent’s own market variability and by the apparent

market variability of the competitor.

Figure 5.1: The Moderating Role of Demand Variability

We also make several extensions. First, all results obtained for the additive demand uncertainty are

preserved under the multiplicative demand uncertainty, demonstrating the robustness of the managerial

insights obtained. Second, we show that the main results obtained for substitutable products are reversed

for complementary products (See Figure 5.1 for a summary). With complementary products, the more

ahead-seeking agents are, the less intense price competition will be. On the other hand, behind aversion

may also reduce price competition if the variability of the market is small enough; otherwise, it will

intensify price competition. Moreover, whereas market variability lowers equilibrium prices and reduces

agents’ profitability in the case of substitutable products, surprisingly, there is an inverted U-shape

relationship between agents’ profitability and market variability in the case of complementary products.

In other words, agents selling complementary products can benefit from demand variability as long as

it is not too high. Lastly, we show that the insights obtained for the linear demand structure are robust

for non-linear demand curves.

5.2 Literature Review

Price competition is one of core themes in firms’ strategic interactions in marketing (see, e.g., Chen et al.

2001; Iyer 1998; Iyer et al. 2005; Narasimhan 1988; Vives 1999, among others). Narasimhan (1988),

for example, studies the equilibrium duopoly pricing strategies when the firms compete for both loyal

consumers and switchers. Iyer (1998) examines how a manufacturer coordinates distribution channels

when retailers are engaged in both price and non-price competition for end consumers. Our work differs

from those papers by incorporating social comparison in models of duopoly price competition.

To the best of our knowledge, our work is the first to study how demand variability affects price

competition with social comparison. Nor are we aware of any analytical work on the influence of decision
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makers’ social comparisons on their strategic interactions (with the underlying assumption being that

they interact with one another even without social comparisons). In a recent and significant contribution

to the literature of social comparison, Iyer and Soberman (2016) examine how social comparison between

socially responsible consumers may influence firms’ product innovation strategies. Lim (2010) studies

how a principal would design a sales contest when sales agents care about their contest outcomes relative

to other contestants, and finds that agents’ social comparison induces the principal to offer a higher

proportion of winners than without social comparison. Our work differs from those papers by studying

how social comparison may influence firms’ strategic price decisions when there is demand variability.

The managerial insights of our work may also shed light on other competition in the presence of social

incentives (see Section 5.6). For substitutable products, pricing decisions are strategic complements,

whereas for complementary products they are strategic substitutes. We show that the effects of social

incentives on competitive behavior for substitutable products are reversed for complementary products.

Social comparisons are also studied in other domains, such as social psychology and behavioral

economics. See a recent comprehensive literature review in Roels and Su (2014). We confirm the

empirical and experimental evidence that social comparison leads to more competitive behavior in a

deterministic environment (see, e.g., Falk and Ichino 2006; Mas and Moretti 2009). Yet we also identify

novel effects of social comparisons in a random environment. The theoretical results provide a testable

hypothesis (i.e., in a random environment, behind aversion intensifies competition; but ahead seeking

may alleviate competition when the degree of uncertainty is high) for decision making in the presence

of social comparison in an uncertain environment, a hypothesis which may have been overlooked so far.

A growing number of papers in the marketing and operations management literature also consider

social preferences of decision makers, contributing to the large literature of social preferences in economics

(Anderson and Simester 2008; Chen and Cui 2013; Cui and Mallcucci 2016; Fehr et al. 2007; Fehr and

KM 1999; Ho and Su 2009; also see Goldfarb et al. 2012 for a survey that calls for studies on behavioral

models of managerial decision-making). Loch and Wu (2008) provide experimental evidence that social

preferences, such as status seeking and reciprocation, systematically affect firms’ economic decisions. Ho

et al. (2014) consider a one-supplier and two-retailer distribution channel and study how distributional

and peer-induced fairness might influence the design of wholesale price contracts.

Some scholars examine stochastic reference points in decision making under uncertainty. Ho et al.

(2010) consider managers’ stochastic reference dependence behavior when studying a multi-location

newsvendor problem, with the realized demands as the reference points. The authors provide a theo-

retical explanation to the pull-to-center bias observed in earlier experiments. Avcı et al. (2014) study

managers’ behind aversion and ahead-seeking behavior in making ordering decisions in a competitive

newsvendor setting, with stochastic reference points of the possible competitors’ profit outcomes. In

Avcı et al. (2014), decision makers do not interact strategically with one another if there are no so-

cial comparisons. In contrast, we focus on how social comparisons interact with demand variability in
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influencing firms’ competitive pricing decisions.

In a related emerging stream of research, a handful of papers study loss aversion with deterministic

or stochastic reference points of consumers, and the firm’s strategies in response. With deterministic

consumer reference points, Popescu and Wu (2007) study a discrete-time infinite-horizon monopolistic

pricing problem under a general nonlinear reference-dependent demand model. Nasiry and Popescu

(2011) study a version with the reference point as a weighted average of the lowest and most recent

prices. Nasiry and Popescu (2012) characterize the effect of anticipated regret on consumer decisions and

on firms’ profits and policies in an advance selling context where buyers have uncertain valuations. Liu

and Shum (2013) study a firm’s optimal pricing and rationing decisions over two periods in anticipation

of possible consumer disappointment due to stockouts. Özer and Zheng (2015) study a seller’s optimal

pricing and inventory strategies when anticipated regret and misperception of product availability affect

consumers’ purchase decisions. Yang et al. (2014a) consider service systems competitively setting average

wait times or prices when consumers exhibit loss aversion behavior against deterministic benchmarks.

With stochastic consumer reference points, three papers apply the framework of endogenized reference

points as personal equilibrium, proposed by Kőszegi and Rabin (2006), to model consumers’ loss aversion

behavior in an operations context. Baron et al. (2015) consider a repeated newsvendor setting, Yang

et al. (2014b) consider a service system system, and Courty and Nasiry (2014) focus on quality-dependent

consumer valuations.

5.3 Model Setup

Consider a symmetric duopoly of agents 1 and 2 facing random price-sensitive demand. The demand

function of agent i, i = 1, 2, denoted by Di(p1, p2, εi), is in the following form:

Di(p1, p2, εi) = di(p1, p2) + εi = m− pi + γp−i + εi, (5.1)

where −i denotes the competitor of agent i, and εi is a random variable as an additive shock to the

potential market size m. (We consider the multiplicative shock in Section 5.5.1.) Without loss of

generality, let Eε1 = Eε2 = 0. Then, it is clear that the expected demands of the two agents are

d1(p1, p2) and d2(p1, p2), respectively. In addition, we assume that ε1 and ε2 follow independent and

identically distributed (i.i.d.), symmetric probability distributions as ε on [−ᾱ, ᾱ]. In other words, there

are symmetrically distributed upswings and downswings in the market size.

We first consider the case that the cross-product price sensitivity satisfies 0 ≤ γ < 1. In other words,

the two agents sell substitutable products, and the pricing decision of one agent has less effect on the

other agent’s demand than on her own demand. (We consider the case of complementary products, i.e.,

−1 < γ < 0, in Section 5.5.2.)
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Without loss of generality, we assume that the marginal cost is c = 0 per unit.2 Then, given a

random shock εi, the profit of agent i, i = 1, 2, is given by:

Πi(p1, p2, εi) = piDi(p1, p2, εi) = pi [di(p1, p2) + εi] .

In addition to their profits, a gain-loss utility is incurred for both agents when the profits are unequal.

We write such utility under social comparisons for agents as follows:

Si(p1, p2, ε) =e [Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]
+ − ` [Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]

−

=e[Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]− (`− e) [Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]
−
, (5.2)

where ε = (ε1, ε2), x+ = max{x, 0} and x− = −min{x, 0}. The second equality is due to x = x+ − x−.

The agents are behind-averse, namely, one agent dislikes the situation in which the other agent earns

a higher profit than herself (i.e., ` ≥ 0). The agents are also ahead-seeking, namely, the agent prefers

to outperform her peer (i.e., e ≥ 0). In view of the behavioral literature (e.g., the celebrated prospect

theory, see Kahneman and Tversky 1979), we require 0 ≤ e ≤ `, which means that the loss due to an

underperformance weighs more than equal-sized gain due to an overperformance.3

For a pair of demand shocks ε, the total utility of agent i, i = 1, 2, is the sum of its profit and its

gain-loss utility under social comparison; i.e., Ui(p1, p2, ε) = Πi(p1, p2, εi) + Si(p1, p2, ε). We confine the

price pi, i = 1, 2, to the interval [0, pmax].

Assumption 5.1 (Regular Price Range). The upper bound, pmax, on the price range satisfies: (i)

if γ ≥ 0, pmax ≤ m− ᾱ, or (ii) if γ < 0, pmax ≤ m−ᾱ
1−γ .

Assumption 5.1 ensures that the ex post demand di(p1, p2) + εi is always nonnegative, regardless

of the realization of εi for any ex-ante pair of price choices (p1, p2) ∈ [0, pmax]2. Even though all the

subsequent results hold without Assumption 5.1, it is only natural that any realization of demand is

nonnegative.

Agents simultaneously set their prices before the random market shocks realize, with agent i’s objec-

tive being to maximize its expected total utility, i.e., to solve maxpi∈[0,pmax] ui(p1, p2) ≡ Eε[Ui(p1, p2, ε)].

The following lemma shows that the ex post utility functions are well-behaved.

Lemma 5.1 For any ε, Ui(pi, p−i, ε), i = 1, 2, is concave in pi for a given p−i.

Proof of Lemma 5.1. We prove that U1(p1, p2, ε) is concave in p1 for a given p2. The proof for

U2(p1, p2, ε) being concave in p2 is exactly the same due to symmetry. In order to do this, we first show

2For positive supply cost c > 0, the model can be converted to the same form as the case with c = 0 by defining
pci = pi − c for i = 1, 2 as the adjusted price. The analysis for c > 0 in the presence of revenue comparisons is analogous.

3Our model can also allow the agents to be distributively fair, namely, the agent does not prefer to earn a higher profit
than its peer because of fairness concerns, i.e., e < 0. For the distributive fairness case, we also require that e ≥ −1, under
which the disutility due to fairness concerns would not completely erode the profit gain itself. Though our results apply to
both distributive fairness and ahead seeking, for the sake of simplicity, we restrict ourselves to ahead seeking in the base
model. See Section 5.6 for more discussions.
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that Π1(p1, p2, ε1)−Π2(p1, p2, ε2) is concave in p1. Let us investigate its differential with respect to p1.

∂ [Π1(p1, p2, ε1)−Π2(p1, p2, ε2)]

∂p1
= m− 2p1 + ε1, (5.3)

which is decreasing in p1. Thus, Π1(p1, p2, ε1) − Π2(p1, p2, ε2) is concave in p1. Note that the function

f(x) = −x− is increasing and concave, implying that − [Π1(p1, p2, ε1)−Π2(p1, p2, ε2)]
−

is concave. Also,

Π1(p1, p2, ε1) is concave in p1 and Π2(p1, p2, ε2) = p2 (m− p2 + γp1 + ε2) is linear in p1. Then, every

term in (5.2) is concave in p1, which assures the concavity of S1(p1, p2, ε) (and thus U1(p1, p2, ε)) in p1

for a given p2. �

As an immediate result, the ex ante expected utility function ui(pi, p−i), i = 1, 2, is concave in pi as

well. By Debreu (1952), we can guarantee the equilibrium existence and can solve for the equilibrium

from the set of first-order conditions.

Corollary 5.1 The price competition game in the presence of social comparison and market variability

has a unique equilibrium: p1 = p2 = p∗ ≡ p̄ ∩ [0, pmax], where

p̄ ≡ (2 + `+ e)m+ 2(`− e)σ
2(2 + `+ e− γ)

, σ ≡ E[ε11{ε1<ε2}] ≤ 0, (5.4)

p̄ ∩ [0, pmax] represents (min{p̄, pmax})+ and 1{·} is the indicator function.

Proof of Corollary 5.5 Please see the appendix (Section 5.7), where all proofs missing from the main-

body can be found. �

Clearly, under the symmetric equilibrium, which is shown to be the unique equilibrium, the two

agents have the same expected profit and expected utility, which will be referred to as π(p∗, p∗) and

u(p∗, p∗) with the subscript i suppressed.

The term σ in (5.4) will be used for measuring market variability in place of more standard variability

measures (e.g., variance) so that the price equilibrium can depend on variability in closed form. We will

show that the higher the variability, the lower the value of σ. We vary market variability within a certain

class of random shocks over the range [−ᾱ, ᾱ].

Definition 5.1 (Partial Order of Randomness) We consider a partially ordered set (M,�), where

M is a class of symmetrically distributed random variables on [L,U ] such that for any X,Y ∈M, X � Y

(i.e., we say, Y is more variable than X) if and only if E(X) = E(Y ) = µ and

FX(x)

 ≤ FY (x) for x ∈ [L, µ] ,

≥ FY (x) for x ∈ [µ,U ] ,
(5.5)

where FX(x) and FY (x) are the cumulative distribution functions of X and Y respectively.

Note that the partial order defined as (5.5) is a sufficient condition for Y to be more variable than X

in the sense of the convex order (for the latter, see Shaked and Shanthikumar 2007). Although the convex
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order does not necessarily imply the condition in (5.5), it is equivalent to Definition 5.1 for many common

bounded, symmetric, unimodal distributions, such as truncated normal and uniform distributions. For

example, a class of truncated normal distributions with the same mean but different standard deviations

satisfies Definition 5.1, with the partial order referring to the convex order. For another example, with

the same range [−1, 1] and the same mean 0, a two-point distribution taking values of 1 and −1 with

an equal probability is more variable than a uniform distribution over [−1, 1]. For ease of analysis, we

focus on the partial order of Definition 5.1 rather than other more general stochastic orders.

The following lemma confirms that the term σ is decreasing with respect to the variability of ε, where

ε is the generic random variable that represents the probability distribution of ε1 and ε2.

Lemma 5.2 Given any X,Y ∈ M where M is a class of distributions endowed with a partial order �

as defined in Definition 5.1. Suppose that Xi, Yi, i = 1, 2, are i.i.d. copies of X and Y , respectively.

Then X � Y if and only if E
{
Y11{Y1<Y2}

}
≤ E

{
X11{X1<X2}

}
.

Proof of Lemma 5.2. Let X,Y ∈ M be supported on [L,U ]. Let X̃ = X − (L + U)/2 and Ỹ =

Y − (L+U)/2. It is equivalent to prove that X̃ � Ỹ if and only if E
{
X̃11{X̃1<X̃2}

}
≤ E

{
Ỹ11{Ỹ1<Ỹ2}

}
,

where X̃i and Ỹi (i = 1, 2) are independent copies of X and Y , respectively. Without loss of generality,

we can assume that (L + U)/2 = 0, so that X̃ = X, Ỹ = Y . Let x̄ = (U − L)/2 for ease of notation.

Then, both X and Y are supported on [−x̄, x̄].

First, note that E
{
X11{X1<X2}

}
=
∫ x̄
−x̄ xF̄X(x)fX(x)dx = 1

2

Ä
−x̄+

∫ x̄
−x̄ F̄X(x)2dx

ä
, where the last

equality is due to integration by parts.

If X � Y , by Definition 5.1, there exists a nonnegative function ∆(x) such that F̄Y (x) = F̄X(x)−∆(x)

for x ∈ [−x̄, 0], F̄Y (x) = F̄X(x) + ∆(x) for x ∈ [0, x̄], and ∆(x) = ∆(−x) for x ∈ [−x̄, 0] (i.e., ∆(x) is

symmetric on [−x̄, x̄]).

E
{
X11{X1<X2}

}
=

1

2

ñ
−x̄+

∫ x̄

−x̄
F̄X(x)2dx

ô
=

1

2

®
−x̄+

∫ 0

−x̄

[
F̄Y (x) + ∆(x)

]2
dx+

∫ x̄

0

[
F̄Y (x)−∆(x)

]2
dx

´
=

1

2

®
−x̄+

∫ x̄

−x̄
F̄Y (x)2dx+

∫ x̄

−x̄
∆(x)2dx+ 2

∫ 0

−x̄
F̄Y (x)∆(x)dx− 2

∫ x̄

0

F̄Y (x)∆(x)dx

´
=

1

2

®
−x̄+

∫ x̄

−x̄
F̄Y (x)2dx+

∫ x̄

−x̄
∆(x)2dx+ 2

∫ 0

−x̄
F̄Y (x)∆(x)dx− 2

∫ 0

−x̄
F̄Y (−x)∆(x)dx

´
≥1

2

®
−x̄+

∫ x̄

−x̄
F̄Y (x)2dx

´
= E

{
Y11{Y1<Y2}

}
,

where the inequality follows from the facts that
∫ x̄
−x̄ ∆(x)2dx ≥ 0 and F̄X(x) ≥ F̄X(−x) for all x ∈ [−x̄, 0].

If Y � X and Y does not equal X in distribution (i.e., X � Y does not hold), then by exchanging
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the roles of X and Y in the above analysis we have

E
{
Y11{Y1<Y2}

}
=

1

2

®
−x̄+

∫ x̄

−x̄
F̄X(x)2dx+

∫ x̄

−x̄
Γ(x)2dx+ 2

∫ 0

−x̄
F̄X(x)Γ(x)dx− 2

∫ 0

−x̄
F̄X(−x)Γ(x)dx

´
,

where Γ(x) = F̄Y (x) − F̄X(x) for x ∈ [−x̄, 0] and Γ(x) = F̄X(x) − F̄Y (x) for x ∈ [0, x̄]. Because Y

does not equal X in distribution, Γ(x) must be strictly positive over a set with positive measure. Thus,

E
{
Y11{Y1<Y2}

}
> 1

2

¶
−x̄+

∫ x̄
−x̄ F̄X(x)2dx

©
= E

{
X11{X1<X2}

}
.

Hence we have shown that X � Y if and only if E{X11{X1<X2}} ≥ E{Y11{Y1<Y2}}. �

By Lemma 5.2, σ ≡ E[ε11{ε1<ε2}] ≤ 0 can indeed be considered as a measure of the variability of

market uncertainty ε. The more variable the market shock, the more negative the value of σ. The measure

reaches its minimum, − ᾱ4 , when ε follows the two-point distribution with Pr(ε = −ᾱ) = Pr(ε = ᾱ) = 1
2 .

5.4 Model Analysis and Results

In this section, we analyze the model in details and study the comparative statics of equilibrium behavior

with respect to the extent of social comparisons and market variability. The resulting insights illustrate

how demand uncertainty interacts with social comparisons in determining the competition outcomes,

in contrast to the deterministic demand case. In addition, we also relax the assumption that agents’

information about market variability is unbiased and examine how biased belief of market variability

may affect agents’ pricing and profits.

5.4.1 Effects of Social Comparison

Deterministic Demand.

As a benchmark, we consider the special case when there is no demand uncertainty.

Lemma 5.3 If ε1 = ε2 ≡ 0, the symmetric equilibrium price and equilibrium profit are decreasing in the

ahead-seeking parameter e and the behind-averse parameter `.4

Proof of Lemma 5.3. The objective function of agent 1 is

u1(p1, p2) =π1(p1, p2) + e [π1(p1, p2)− π2(p1, p2)]
+ − ` [π1(p1, p2)− π2(p1, p2)]

−

=π2(p1, p2) + (1 + e) [π1(p1, p2)− π2(p1, p2)]− (`− e) [π1(p1, p2)− π2(p1, p2)]
−

=p2(m− p2 + γp1) + (1 + e)(p1 − p2)(m− p1 − p2)− (`− e) [(p1 − p2)(m− p1 − p2)]
−
.

4Throughout the chapter, monotonicity is used in its weaker sense.
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If p2 ≤ m
2 , then

u1(p1, p2) =


p2(m− p2 + γp1) + (1 + `)(p1 − p2)(m− p1 − p2) for p1 ≤ p2,

p2(m− p2 + γp1) + (1 + e)(p1 − p2)(m− p1 − p2) for p2 < p1 ≤ m− p2,

p2(m− p2 + γp1) + (1 + `)(p1 − p2)(m− p1 − p2) for p1 > m− p2.

In turn, the best response function can be decided as follows:

B̃(p2) =


m
2 + γp2

2(1+e) for p2 ≤ (1+e)m
γ+2(1+e) ,

m− p2 for (1+e)m
γ+2(1+e) < p2 ≤ (1+`)m

γ+2(1+`) ,

m
2 + γp2

2(1+`) for p2 >
(1+`)m
γ+2(1+`) .

Similarly, we can obtain the form of the best response function for p2 ≥ m
2 .

B̃(p2) =


m
2 + γp2

2(1+e) for p2 ≥ (1+e)m
2(1+e)−γ ,

p2 for (1+`)m
2(1+`)−γ < p2 ≤ (1+e)m

2(1+e)−γ ,

m
2 + γp2

2(1+`) for p2 <
(1+`)m

2(1+`)−γ .

Solving B̃(p2) = p2, we get infinitely many equilibra: any p∗ ∈
î
m(1+`)

2(1+`)−γ ,
m(1+e)

2(1+e)−γ

ó
is an equilibrium.

As e increases, the upper limit of this interval decreases. Suppose that e1 < e2. For every equilibrium

price p2∗ ∈
î
m(1+`)

2(1+`)−γ ,
m(1+e2)

2(1+e2)−γ

ó
for the case with e = e2, we can find an equilibrium price p1∗ ∈î

m(1+`)
2(1+`)−γ ,

m(1+e1)
2(1+e1)−γ

ó
for the case with e = e1, such that p2∗ ≤ p1∗. In this sense, the equilibrium price

is decreasing in e. In the same sense, it is also decreasing in `.

It is easy to see that every equilibrium price p∗ is lower than p̃ ≡ m
2(1−γ) , at which π(p, p) achieves

the maximum. Thus, π(p∗, p∗) is decreasing in e. �

For deterministic demand, the social externality is in the form of

s(p1, p2) ≡ e [πi(p1, p2)− π−i(p1, p2)]
+ − ` [πi(p1, p2)− π−i(p1, p2)]

−
. (5.6)

Lemma 5.3 confirms the conventional wisdom and social comparison theory, which suggest that in a

deterministic world, both behind aversion and ahead-seeking behavior, by exerting the social externality

s(p1, p2), lead to more competitive situations. That can be explained as follows. Suppose agents stand at

the equilibrium of price competition without social comparison effects. In the presence of social compar-

isons, other than maximizing one’s own profit, each agent gains more utility by beating the competitor.

Such an ahead-seeking incentive would induce one agent to undercut the competitor by reducing price.

The other agent, disliking underperformance, also follows suit by reducing price. This undercutting



www.manaraa.com

Chapter 5. Pricing Behaviors under Social Incentives 99

leads to a lower price equilibrium than the one sustained in the absence of social comparisons. We call

this social competitive effect. This socially intensified competition leads to a profit loss for both agents,

compared to the situation without social comparisons.5

Random Demand.

We show that demand uncertainty changes the competitive landscape in the presence of social compar-

isons. In particular, we investigate the effect of social comparisons on the agents’ price, expected profit,

and expected utility in equilibrium.

Proposition 5.1 In equilibrium, we have:

(i) (Behind Aversion) The price p∗, the expected profit π(p∗, p∗), and the expected utility u(p∗, p∗) are

decreasing in the behind-averse parameter `;

(ii) (Ahead Seeking) There exists a threshold on the market variability above which the price p∗,

the expected profit π(p∗, p∗), and the expected utility u(p∗, p∗) are increasing in the ahead-seeking

parameter e; otherwise, the price p∗ and the expected profit π(p∗, p∗) are decreasing in e.6

Proof of Proposition 5.1. For notation convenience, let r ≡ 1/(2+ `+e). By the assumption e ≥ −`,

it is clear that 0 < r ≤ 1
2 .

(i) Price. By (5.4), it is easily verified that

dp̄

d`
= −γm− 2(2 + 2e− γ)σ

2(2 + `+ e− γ)
≤ 0.

Thus, p̄ is decreasing in ` and so is p∗ = p̄ ∩ [0, pmax].

Profit. It is easy to see that π(p, p) is concave in p and reaches its maximum at p = p̃ ≡ m
2(1−γ) .

Since σ ≤ 0 and r ∈ (0, 1
2 ], we know that p̄ = m+2(`−e)σr

2(1−γr) ≤ p̃. This implies that π(p, p) is increasing in

p ≤ p̃. Then, π(p∗, p∗) is decreasing in `, because p∗(≤ p̃) is decreasing in `.

Utility. In equilibrium, the expected utility is u(p∗, p∗) = π(p∗, p∗)+2(`−e)p∗σ. We take derivative

of (`− e)p̄ with respect to `:

d[(`− e)p̄]
d`

=
θ0 + θ1`+ θ2`

2

2(2 + `+ e− γ)2
,

where θ0 ≡ 4m − 2γm + (4m − 8σ + 4γσ)e + (m − 6σ)e2, θ1 ≡ 4m − 2γm + 8σ − 4γσ + (2m + 4σ)e,

θ2 ≡ m+ 2σ. Lemma 5.2 shows that σ is non-positive and decreasing with respect to the variability of

ε. ε achieves the largest variability with σ = − ᾱ4 when it follows the two-point distribution satisfying

Pr(ε = −ᾱ) = Pr(ε = ᾱ) = 1
2 . Given that ᾱ ≤ m (see Assumption (R)), we have σ ≥ − ᾱ4 ≥ −

m
4 .

5We verify that Lemma 5.3 is robust even if the agents have asymmetric market sizes. In other words, even if
di(pi, p−i) = mi − pi + γp−i, i = 1, 2, with mi 6= m−i, both upward and downward social comparisons still work in
the same direction to push down the equilibrium prices.

6The expected utility u(p∗, p∗) in general does not have any monotone property in e.
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Then, θi ≥ 0 for i = 0, 1, 2, so that d[(`−e)p̄]
d` is nonnegative, implying that (` − e)p∗ is increasing in `.

Consequently, 2(` − e)p∗σ decreases in `. We already showed that π(p∗, p∗) is decreasing in `. Thus,

u(p∗, p∗) is decreasing in `.

(ii) Price. To see how p∗ varies in e, we take derivative:

dp̄

de
= −2(2 + 2`− γ)σ + γm

2(2 + `+ e− γ)2
,

which is positive if and only if σ < − γm
2(2+2`−γ) . As a result, p̄ (thus also p∗) is increasing in e if

σ < − γm
2(2+2`−γ) , and is decreasing in e otherwise.

Profit. Similar to part (i), we can conclude that π(p∗, p∗) is increasing in e if σ < − γm
2(2+2`−γ) , and

is decreasing in e otherwise.

Utility. Consider the case with σ < − γm
2(2+2`−γ) . As already shown, π(p∗, p∗) is increasing in e. We

examine how (`− e)p̄ varies in response to increase of e.

We have

d[(`− e)p̄]
de

=− η0 + η1e+ η2e
2

2(2 + `+ e− γ)2
,

with η0 = 4m + 4m` + 8σ` − 4γσ` − 2γm + 6σ`2 + m`2, η1 = 4m − 8σ − 2γm + 4γσ − 4σ` + 2m` and

η2 = m− 2σ.

Given that σ ≥ −m4 , we have ηi ≥ 0 for i = 0, 1, 2. Then, (`− e)p̄ is decreasing in e. Consequently,

u(p∗, p∗) = π(p∗, p∗) + 2(`− e)p∗σ is increasing in e. �

Proposition 5.1 says that ceteris paribus, the more behind-averse agents are, the more intense price

competition will be. Moreover, it is intriguing that when market variability is large enough, ceteris

paribus, the more ahead-seeking agents are, the less intense price competition will be. In other words,

ahead seeking by agents alleviates price competition in a market with sufficiently large market vari-

ability, while behind aversion behavior of agents always intensifies price competition. To understand

this somewhat counterintuitive result, we take a closer look at the expected gain-loss utility under so-

cial comparisons and see how exactly social comparisons influence competitive behavior under demand

uncertainty. By Equation (5.2), we can write the expected social utility of agent i, i = 1, 2:

E[Si(p1, p2, ε)] = e [πi(p1, p2)− π−i(p1, p2)]︸ ︷︷ ︸
expected-comparison effect: ↓

−(`− e)
¶
E [Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]

−©︸ ︷︷ ︸
variable-inequality effect: ↓ or ↑

, (5.7)

where πi(p1, p2) = pidi(p1, p2) is the deterministic profit function for agent i.

The social comparisons under market uncertainty can be divided into two parts. The first externality,

corresponding to the first term in the expression of E[Si(p1, p2, ε)], captures the expected social compari-

son effect independently of the distribution of demand uncertainty. We call this the expected-comparison
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effect. By applying Lemma 5.3 to the case e = `, we can see that the expected-comparison effect

intensifies price competition, as in the deterministic case. In other words, as the agentsbecome more

behind-averse or ahead-seeking, the expected-comparison effect pushes the equilibrium prices lower.

Since the behind aversion parameter ` is assumed to dominate the ahead-seeking parameter e, this

expected-comparison effect is different from, and intensifies price competition to a less extent than, the

social comparison externality s(p1, p2) in Equation (5.6) for deterministic demand.

Moreover, the second externality, corresponding to the second term in the expression of E[Si(p1, p2, ε)],

captures the additional externality driven by market variability. We call this the variable-inequality ef-

fect. This effect shows how variability moderates competitive decision making. Specifically, upward and

downward social comparisons would shift the weights of different uncertain scenarios in an agent’s deci-

sion making under uncertainty, in a different way. In setting the ex ante prices, agents would imagine

all possible outcomes of market realizations. On the one hand, the agent with a low market realization

would prefer to post a relatively low price, in order to stimulate demand. On the other hand, the agent

with a high market realization would prefer to post a relatively high price, in order to capitalize on

the large market size. Downward and upward social comparisons play different roles in the variable-

inequality effect. When ahead seeking becomes more prominent, in deciding the price ex ante, the agents

put more weight on those high market realizations, because they tend to beat the competitor and gain

more pleasure in those situations. Since a larger market warrants a higher price, the greater weight on

those more booming market realizations would raise the ex ante prices higher. On the other hand, when

behind aversion becomes more significant, the agents put more weight on those low market realizations,

because they tend to feel more pain in those situations. Since a smaller market demands a lower price,

the greater weight on those more depressing market realizations would push down the ex ante prices.

Combining the expected-comparison and variable-inequality effects, ceteris paribus, as behind aver-

sion behavior becomes more prominent, both effects lead to more intense price competition. Ce-

teris paribus, as ahead seeking becomes more prominent, the expected-comparison effect is more pro-

competitive and the variable-inequality effect is more anti-competitive. When the demand variability

becomes higher, the variable-inequality effects become more prominent. If market variability is large

enough, the variable-inequality effect is dominant; as a combined result, ceteris paribus, the market

competition becomes milder when the agents exhibit stronger ahead seeking behavior.

Comparison Between Situations with and without Social Comparisons.

We have shown how the equilibrium performance changes in relation to the risk-averse and ahead-

seeking parameters separately. In the extreme, if we set ` = e = 0 in Equation (5.4), the situation

with demand uncertainty is equivalent to the setting when there is no social comparison and demand

uncertainty at all, namely, the traditional setting of price competition in a deterministic world (as long

as the additive variability has its mean equal to zero). It is not clear from Proposition 5.1 whether the



www.manaraa.com

Chapter 5. Pricing Behaviors under Social Incentives 102

marketplace becomes more or less competitive when agents who did not practice social comparison start

to receive social incentives for comparing with one another. By Proposition 5.1, when agents practice

behind aversion, price competition becomes more intense. However, again by the same proposition, when

agents practice ahead seeking, price competition can become less intense. It is not yet clear so far which

force would dominate.

It is easy to see that, if social comparison is absent, then p1 = p2 = p̂ ≡ min {pmax,m/(2− γ)} is

the unique price equilibrium. In the following proposition, we compare the equilibrium price, profit, and

utility with and without social comparison.

Proposition 5.2 The equilibrium price, profit, and utility are lower with social comparison than without.

Proof of Proposition 5.2. Price. We first compare p̄ with m
2−γ by calculating their difference.

p̄− m

2− γ
=
m+ 2(`− e)rσ

2(1− γr)
− m

2− γ
=
−γ(1− 2r)m+ 2(2− γ)(`− e)rσ

2(1− γr)(2− γ)
≤ 0,

where r ≡ 1
2+`+e and the inequality follows from the facts that r ≤ 1

2 and σ ≤ 0. It follows that

p∗ = p̄
⋂

[0, pmax] ≤ min
¶
pmax, m

2−γ

©
= p̂.

Profit. Because m
2−γ ≤

m
2(1−γ) = p̃, we have p∗ ≤ p̂ ≤ p̃. The function π(p, p) is increasing in p for

p ≤ p̃. Thus, π(p∗, p∗) ≤ π(p̂, p̂).

Utility. In equilibrium, we have u(p∗, p∗) = π(p∗, p∗) + 2(` − e)σp∗ ≤ π(p∗, p∗) ≤ π(p̂, p̂). When

social comparison is absent, we have u(p̂, p̂) = π(p̂, p̂). Then, u(p∗, p∗) ≤ u(p̂, p̂). �

Proposition 5.2 shows that agents experience more intense price competition with social comparison

than without. Moreover, the agents earn lower profit and utility with social comparison than with-

out. That is because unlike the situation without social comparison, when there is social comparison

the potentially anti-competitive ahead seeking is always dominated by pro-competitive behind aversion

behavior, under the assumption that the behind aversion parameter ` dominates the ahead-seeking pa-

rameter e. As mentioned in Section 5.1, social comparison among competitors may be inevitable, though

they could be better off without it.

5.4.2 Effect of Market Variability

We investigate the effect of market variability on the agents’ equilibrium price, expected profit, and

expected utility with social comparisons. We summarize the results in the following proposition.

Proposition 5.3 In equilibrium, the price p∗ and the expected profit π(p∗, p∗) are decreasing in the

market variability, and the expected utility u(p∗, p∗) is decreasing in the market variability as long as

u(p∗, p∗) remains nonnegative.

Proof of Proposition 5.3. Price. By (5.4), p̄ is increasing in σ. Then, p∗ = p̄
⋂

[0, pmax] is decreasing

with respect to the variability of ε be lemma 5.2.
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Profit. Since π(p, p) is concave in p and achieves the maximum at p = p̃ ≡ m
2(1−γ) , we know that

π(p, p) is increasing in p for p ≤ p̃. It is easy to show that p∗ ≤ p̃. Then, π(p∗, p∗) is increasing in p∗,

thus decreasing with respect to the variability of ε by (i).

Utility. From (5.2), we can obtain the form of u(p̄, p̄) as follows:

u(p̄, p̄) =p̄
[
m− (1− γ)p̄− (`− e)E(ε1 − ε2)−

]
= p̄

ï
m− (1− γ) · m+ 2(`− e)rσ

2(1− γr)
+ 2(`− e)σ

ò
=p̄ · [1 + γ(1− 2r)]m+ 2(`− e)[2− r(1 + γ)]σ

2(1− γr)
.

Note that r ≡ 1
2+`+e ∈ (0, 1

2 ] and γ ∈ [0, 1). Since both p̄ and σ are decreasing with respect to the

variability of ε, u(p̄, p̄) is decreasing in the variability of ε as long as it remains non-negative. �

Proposition 5.3 shows that, ceteris paribus, price competition is more intense when there is more

market variability. The variable-inequality effect is affected by market variability, whereas the expected-

comparison effect is not. When market variability increases, both the anti-competitive ahead seeking

and the pro-competitive behind aversion behavior increase. As we have shown, more prominent ahead

seeking under high market variability reduces price competition, while more prominent behind aversion

promotes price competition. The former is dominated by the latter, which leads to more intense price

competition. This can be further explained as follows. In equilibrium, the expected utility of a agent

can be written as u(p∗, p∗) = p∗di(p
∗, p∗)− (`− e)p∗E[(ε1 − ε2)−]. When the variability of ε increases,

the term E[(ε1− ε2)−] = −2σ ≥ 0 increases as a result of the greater possibility of having more unequal

realizations of markets. It would appear logical that in the presence of social comparisons, the agents

tend to lower the price p∗ to mitigate the negative effects of market variability (since `− e ≥ 0).

Moreover, a more intense price competition resulting from more uncertain market conditions further

reduces both agents’ profits. In fact, the equilibrium price p∗ in the presence of social comparisons is

already below the “socially optimal” price p̃ (which maximizes 2π(p, p) in terms of p), i.e., the price that

a centralized profit-maximizing planner would optimally set for both agents. Therefore, when p∗ falls in

response to greater market variability, the profit of the agents is always reduced.

Proposition 5.3 also suggests that the agents’ utility diminishes as market variability increases. While

the agents lower their equilibrium prices p∗ in response to more uncertain market conditions, the expected

social utility s(p∗, p∗) = 2(` − e)σp∗ also declines (i.e., becomes more negative) with respect to market

variability (since the higher the market variability, the more negative the term σ) as long as the expected

utility u(p∗, p∗) remains nonnegative. With the decrease of both expected profit and expected social

utility, the overall expected utility u(p∗, p∗) also decreases. It is possible that u(p∗, p∗) will become

negative when market variability reaches a certain threshold and remain negative thereafter. Since a

negative utility u(p∗, p∗) offers no incentive for the agents to remain in the market, the effect of market

variability on u(p∗, p∗) beyond that threshold may no longer be of interest to us.
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5.4.3 Biased Belief about Market Variability

Intuitively, the effect of social comparisons hinges on the observability of the factors that are being

compared. So far, we have assumed that each agent has the same knowledge of its own market variability

and its competitor’s; i.e., the distributions of ε1 and ε2 are identical and are common knowledge to both

agents. In this extension, we consider the model in which the agents have perceived belief about market

variability that may underestimate or overestimate each other’s market variability; i.e., agents’ perceived

belief about market variability may be biased.

To this end, we use the following notation. Either of the two agents knows its own market uncertainty

as ε and perceives the other agent’s to be ε̃. In other words, ε captures the “true” market uncertainty of

a agent on the basis of its own forecast, while ε̃ represents the possibly distorted market uncertainty of

the competitor perceived by the agent. These two random variables need not be identically distributed.

The agents overestimate each other’s market variability if ε̃ is more variable than ε, and underestimate

it if ε̃ is less variable than ε, with the comparison of variability in the sense of Definition 5.1.

It is easily verified that the agents’ expected utility function is concave, thus guaranteeing the ex-

istence of equilibrium prices. In particular, the equilibrium price for both agents is given by p∗ =

p̄ ∩ [0, pmax], where

p̄ ≡ (2 + `+ e)m+ 2(`− e)σ̃
2(2 + `+ e− γ)

, (5.8)

and σ̃ ≡ E[ε1{ε<ε̃}]. The closed-form expression (5.8) reduces to Equation (5.4) when there are no biased

beliefs. Moreover, by an analysis similar to the proof of Corollary 5.1, we can show that the equilibrium

given above is the unique equilibrium if e > −1. Lemma 5.4 below shows the monotonicity of the term

σ̃ and its counterpart σ̌ ≡ E[ε̃1{ε̃<ε}] in the market distributions ε and ε̃.

Lemma 5.4 The terms σ̃ and σ̌ satisfy the following monotone properties:

(i) σ̃ is nonpositive, decreasing in the variability of ε, and increasing in the variability of ε̃;

(ii) If the density functions of ε and ε̃, namely fε(x) and fε̃(x), are unimodal on [−ᾱ, ᾱ], then 2σ̃ + σ̌

is decreasing in the variability of ε̃ and σ̃ + 2σ̌ is decreasing in the variability of ε.

Proof of Lemma 5.4. (i) We write E
[
ε1{ε<ε̃}

]
=
∫ ᾱ
−ᾱ xF̄ε̃(x)fε(x)dx, where F̄ε̃(x) = 1 − Fε̃(x) ≡

Pr(ε̃ > x) and fε(x) is the density function of ε. To prove that E
[
ε1{ε<ε̃}

]
is increasing in the variability

of ε̃, we consider a random variable ε̃′, such that ε̃ � ε̃′. That is, there exists a symmetric function

∆(x) ≥ 0 defined on [−ᾱ, ᾱ] such that Fε̃′(x) = Fε̃(x) + ∆(x) for x ∈ [−ᾱ, 0] and Fε̃′(x) = Fε̃(x)−∆(x)

for x ∈ [0, ᾱ]. Then,

E
[
ε1{ε<ε̃′}

]
=

∫ 0

−ᾱ
x
[
F̄ε̃(x)−∆(x)fε(x)

]
dx+

∫ ᾱ

0

x
[
F̄ε̃(x) + ∆(x)fε(x)

]
dx
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=

∫ ᾱ

−ᾱ
xF̄ε̃(x)fε(x)dx−

∫ 0

−ᾱ
x∆(x)fε(x)dx+

∫ ᾱ

0

x∆(x)fε(x)dx

≥
∫ ᾱ

−ᾱ
xF̄ε̃(x)fε(x)dx = E

[
ε1{ε<ε̃}

]
.

Therefore, E
[
ε1{ε<ε̃}

]
is increasing in the variability of ε̃.

We continue to prove that E
[
ε1{ε<ε̃}

]
is decreasing in the variability of ε. Using integration by parts,

we can show that E
[
ε1{ε<ε̃}

]
=
∫ ᾱ
−ᾱ Fε(x)h(x)dx, where h(x) = xfε̃(x) − F̄ε̃(x). It is easy to see that

h(−x) ≤ h(x) for all x ≥ 0. Then, for a random variable ε′ such that ε � ε′, we have Fε′(x) = Fε(x)+Λ(x)

for x ∈ [−ᾱ, 0] and Fε′(x) = Fε(x)−Λ(x) for x ∈ [0, ᾱ], where Λ(x) ≥ 0 is a symmetric function defined

on [−ᾱ, ᾱ]. Consequently,

E
[
ε1{ε′<ε̃}

]
=

∫ 0

−ᾱ
[Fε(x) + Λ(x)]h(x)dx+

∫ ᾱ

0

[Fε(x)− Λ(x)]h(x)dx

=

∫ ᾱ

−ᾱ
Fε(x)h(x)dx+

∫ 0

−ᾱ
Λ(x)h(x)dx−

∫ ᾱ

0

Λ(x)h(x)dx

=E
[
ε1{ε<ε̃}

]
+

∫ ᾱ

0

Λ(x)h(−x)dx−
∫ ᾱ

0

Λ(x)h(x)dx ≤ E
[
ε1{ε<ε̃}

]
.

Thus, E
[
ε1{ε<ε̃}

]
is decreasing in the variability of ε.

Finally, since σ̃ = E
[
ε1{ε<ε̃}

]
= 0 if ε ≡ 0, we have σ̃ ≤ 0 if ε is random.

(ii) We write 2σ̃ + σ̌ as follows:

2σ̃ + σ̌ =2

∫ ᾱ

−ᾱ
xF̄ε̃(x)fε(x)dx+

∫ ᾱ

−ᾱ
xF̄ε(x)fε̃(x)dx

=− 2

∫ ᾱ

−ᾱ
xFε̃(x)fε(x)dx+

ñ
−
∫ ᾱ

−ᾱ
Fε̃(x)F̄ε(x)dx+

∫ ᾱ

−ᾱ
xfε(x)Fε̃(x)dx

ô
=−

∫ ᾱ

−ᾱ
Fε̃(x)

[
xfε(x) + F̄ε(x)

]
dx.

Let g(x) = xfε(x) + F̄ε(x). Then, g′(x) = xf ′ε(x), which is non-positive for all x ∈ [−ᾱ, ᾱ], due to the

assumption that fε(x) is symmetric and unimodal on [−ᾱ, ᾱ]. As a result, g(x) is decreasing on [−ᾱ, ᾱ].

Following the same analysis we used in (i) for proving σ̃ is decreasing in the variability of ε, we can show

that 2σ̃ + σ̌ is decreasing in the variability of ε̃.

Symmetrically, it follows that σ̃ + 2σ̌ is decreasing in the variability of ε. �

The following result shows how the agent’s own market variability and the perceived variability about

the competitor affect the equilibrium price and expected profit.

Proposition 5.4 When agents have biased belief about market variability, in equilibrium, the price p∗

and the expected profit π(p∗, p∗) are decreasing in the agent’s own market variability, and are increasing

in the perceived market variability of the competitor.

Proof of Proposition 5.4. (i) Price. By (5.8), p∗ is increasing in σ̃. Thus, it is decreasing in the
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variability of ε and increasing in the variability of ε̃ by Lemma 5.4.

Profit. It is easy to see that p∗ ≤ p̃ ≡ m
2(1−γ) . Since π(p, p) is concave and reaches the maximum

at p = p̃, the expected profit π(p∗, p∗) is increasing in p∗. Therefore, it is decreasing in the variability of

ε and increasing in the variability of ε̃.

(ii) If both agents set their prices to p, the expected social utility of either agent is s(p, p) =

eE [Π(p, p, ε)−Π(p, p, ε̃)]
+

+ `E [Π(p, p, ε)−Π(p, p, ε̃)]
−

= −(`− e)pE(ε− ε̃)− = (`− e)p(σ̃ + σ̌). Then,

the expected utility of the agent is u(p, p) = π(p, p) + s(p, p) = p [m− (1− γ)p+ (`− e)(σ̃ + σ̌)]. When

p = p̄,

u(p̄, p̄) = p̄ [m− (1− γ)p̄− (`− e)(σ̃ + σ̌)] =p̄

ï
m− (1− γ)

m+ 2(`− e)rσ̃
2(1− γr)

+ (`− e)(σ̃ + σ̌)

ò
=p̄

ï
1 + γ(1− 2r)

2(1− γr)
a+ (`− e)

Å
1− r

1− γr
σ̃ + σ̌

ãò
,

where r ≡ 1
2+`+e ∈ (0, 1

2 ]. By (i), p̄ is decreasing in the variability of ε. On the other hand, it is easy to

see that 1−r
1−γr >

1
2 . Thus, 1−r

1−γr σ̃+ σ̌ =
Ä

1−r
1−γr −

1
2

ä
σ̃+ 1

2 (σ̃ + 2σ̌), which is decreasing in the variability

of ε by Lemma 5.4. Therefore, u(p̄, p̄), thus also u(p∗, p∗), is decreasing in the variability of ε as long as

it remains nonnegative.

It remains to show that u(p∗, p∗) is decreasing in the variability of ε̃. Let us calculate the derivative

of u(p̄, p̄) with respect to σ̃. Using the expression p̄ = m+2(`−e)rσ̃
2(1−γr) , we have

du(p̄, p̄)

dσ̃
=

`− e
2(1− γr)2

ßï
(1− γr)dσ̌

dσ̃
+ 1 + γr(1− 2r)

ò
m

+2(`− e)rσ̃
ï
2(1− r) + (1− γr)dσ̌

dσ̃

ò
+ 2(`− e)r(1− γr)σ̌

™
.

By Lemma 5.4, σ̃ is increasing in the variability of ε̃ and 2σ̃ + σ̌ is decreasing in the variability of ε̃.

This implies that 2σ̃ + σ̌ is decreasing in σ̃. Therefore, when the variability of ε̃ increases, dσ̌
dσ̃ ≤ −2.

Consequently, (1−γr)dσ̌
dσ̃ +1+γr(1−2r) ≤ −2(1−γr)+1+γr(1−2r) = −1+γr(3−2r) < −1+γ ≤ 0,

where the second inequality holds because r(3 − 2r) < 1 for r < 1
2 . This result implies that du(p̄,p̄)

dσ̃ is

decreasing in m. We can calculate that

du(p̄, p̄)

dσ̃

∣∣
m=−2(`−e)rσ̃ =

[(1− 2r)σ̃ + σ̌]r(`− e)2

2(1− γr)
.

Thus, du(p̄,p̄)
dσ̃ ≤ [(1−2r)σ̃+σ̌]r(`−e)2

2(1−γr) ≤ 0 for m ≥ −2(` − e)rσ̃, implying that u(p̄, p̄) is decreasing in σ̃,

thus in the variability of ε̃, as long as m ≥ −2(`− e)rσ̃ (which always holds under our assumptions, by

a similar analysis as in the proof of Corollary 5.1). �

The variable-inequality effect is affected in different ways by a agent’s own market variability and

by what it believes to be the competitor’s market variability. As is consistent with Proposition 5.3,

Proposition 5.4 shows that price competition becomes more intense if the agent’s own market becomes
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more variable. When a agent’s own market is more variable, as explained before for the variable-

inequality effect, the ahead seeking tends to push the prices up and the behind aversion tends to push

the prices down. The former is dominated by the latter. As a combined result, the equilibrium prices

are reduced and price competition is intensified.

Moreover, price competition is alleviated when the perceived market variability of the competitor

becomes higher. That is because the agent would prefer to believe that the competitor experienced more

extreme market shocks. On the one hand, it is more likely that the competitor has a larger realized

demand; as explained before for the variable-inequality effect, the competitor’s ahead seeking tends to

push up the competitor’s price; in anticipation of this, the agent herself has an incentive to raise its own

price. On the other hand, it is more likely that the competitor has a smaller realized demand; the agent’s

own ahead-seeking behavior tends to push up its price. As a result, price competition is alleviated and

the agent’s expected profit is higher when the perceived market variability of the competitor increases.

5.5 Extensions

In this section, we consider a couple of extensions of our base model. These results not only confirm

the robustness of the insights from the base model, but also enrich the understanding of the expected-

comparison and variable-inequality effects that have been identified.

5.5.1 Multiplicative Demand Shock

In the base model, the demand uncertainty is in the form of an additive shock. In this subsection,

we consider demand uncertainty in the form of a multiplicative shock. In particular, we consider the

following demand function:

Di(pi, p−i, ζi) = ζidi(pi, p−i) = ζi(m− pi + γp−i),

where ζ1 and ζ2 are i.i.d. and symmetrically distributed nonnegative random variables. Let ζ be the

generic random variable for ζ1 and ζ2. We assume that Eζ = 1 and ζ ∈ [2− β̄, β̄], with β̄ ∈ (1, 2] being

the upper bound of the random shock.

As in the base model, we can define and write in closed form the ex post profit function Πi(p1, p2, ζi),

the expected profit function πi(p1, p2), the ex post utility function Ui(p1, p2, ζ), and the expected utility

function ui(p1, p2) for the two agents i = 1, 2. We can show that the expected utility ui(p1, p2) is concave

in pi, and hence there exists a symmetric equilibrium in which

p1 = p2 = p∗ =
[1 + e+ (`− e)δ]m

2(1− γ)[1 + e+ (`− e)δ] + γ(1 + `+ e)
, (5.9)

where δ ≡ E
[
ζ11{ζ1<ζ2}

]
. Because the multiplicative shock is nonnegative, δ ≥ 0. If we focus on a class
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of random shocks as in Definition 5.1 with L = 2 − β̄ and U = β̄, by Lemma 5.2, δ is a measure of

the demand variability within the focal class of random shocks. Again, the more variable the demand

shocks, the lower the value of δ ≥ 0. The measure reaches its maximum value 1
2 when ζ ≡ 1, and its

minimum value 3−β̄
4 when ζ follows the two-point distribution with Pr(ζ = 2− β̄) = Pr(ζ = β̄) = 1

2 .

The following proposition describes how the social comparison parameters ` and e affect the price,

the expected profit, and the expected utility of the agents in equilibrium, for the alternative form of

demand uncertainty.

Corollary 5.2 In equilibrium, for substitutable products with multiplicative demand shocks:

(i) (Behind Aversion) The price p∗ and the expected profit π(p∗, p∗) are decreasing in the behind-

averse parameter `, and the expected utility u(p∗, p∗) is decreasing in ` until it reaches zero, and

remains nonpositive thereafter;

(ii) (Ahead Seeking) There exists a threshold on the market variability above which the price p∗ and

the expected profit π(p∗, p∗) and the expected utility u(p∗, p∗) are increasing in the ahead-seeking

parameter e; otherwise, the price p∗ and the expected profit π(p∗, p∗) are decreasing in e.

Proof of Corollary 5.2. (i) Price. We calculate the derivative of p∗ with respect to ` as follows:

dp∗

d`
=

−γm[1− δ + (1− 2δ)e]

{2(1− γ)[1 + e+ (`− e)δ] + γ(1 + `+ e)}2
< 0,

where the inequality holds because 0 ≤ δ ≤ 1
2 (note that 0 ≤ E(ζ1 − ζ2)− = 1 − 2δ). Then, p∗ is

decreasing in `.

Profit. We can verify that p∗ ≤ p̃ ≡ m
2(1−γ) . Then, π(p∗, p∗) is decreasing in `.

Utility. In equilibrium, the expected utility can be written into the following form:

u(p∗, p∗) = π(p∗, p∗) [1− (`− e)(1− 2δ)] .

We have shown that π(p∗, p∗) is decreasing in `. Moreover, 1− (`− e)(1− 2δ) is decreasing in `. If

1− (`− e)(1− 2δ) ≥ 0, then u(p∗, p∗) is decreasing in `.

(ii) Price. We calculate the derivative of p∗ with respect to e as follows:

dp∗

de
=

−γm[(2`+ 1)δ − `]
{2(1− γ)[1 + e+ (`− e)δ] + γ(1 + `+ e)}2

.

We see that dp∗

de ≤ 0 if δ ≥ `
2`+1 , and dp∗

de > 0 otherwise. Thus, p∗ is decreasing in e if the variability of

ζ is lower than the threshold at which δ = `
2`+1 , and increasing in e otherwise.

Profit. Since p∗ ≤ p̃ ≡ γ
2(1−γ) , π(p∗, p∗) has the same monotonicity as p∗ does in the variability of

ζ.

Utility. If δ < `
2`+1 , then u(p∗, p∗) = π(p∗, p∗) [1− (`− e)(1− 2δ)] is increasing in e if it is
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nonnegative. �

Corollary 5.2 confirms that impacts of social comparisons obtained under the additive demand shocks

(see Proposition 5.1) are robust. In particular, more prominent behind aversion behavior always leads

to more intense price competition. However, price competition is reduced by more prominent status

seeking if the market variability is above a threshold, but otherwise it is intensified. These results can be

explained analogously by the expected-comparison effect and the variable-inequality effect. We further

proceed to examine the effects of market variability.

Corollary 5.3 In equilibrium, for substitutable products with multiplicative demand shocks, the price p∗

and the expected profit π(p∗, p∗) are decreasing in the market variability, and the expected utility u(p∗, p∗)

is decreasing in the market variability before it reaches zero, and remains nonpositive thereafter.

Proof of Corollary 5.3. It follows directly from (5.9) that p∗ is increasing in δ, thus decreasing in the

variability of ζ. Then, by the result that p∗ ≤ p̃ ≡ m
2(1−γ) , the expected profit π(p∗, p∗) is decreasing in

the variability of ζ.

Finally, because both π(p∗, p∗) and 1−(`−e)(1−2δ) are increasing in δ, the expected utility u(p∗, p∗) =

π(p∗, p∗) [1− (`− e)(1− 2δ)] increases in δ if it is nonnegative. Therefore, u(p∗, p∗) is decreases in the

variability of ζ until it reaches zero. �

The results in Corollary 5.3 are consistent with Proposition 5.3, showing that when the market

variability increases, price competition is more intense, with lower expected profit and utility.

5.5.2 Complementary Products

Consider the model with γ ∈ (−1, 0), in which the two agents sell complementary products instead of

substitutable products. We now investigate how social comparisons affect the agents’ equilibrium price,

expected profit, and expected utility for complementary products. The nature of the game has changed,

and that is expected to change how social comparisons affect equilibrium outcomes.

We can show that there exists an equilibrium with p1 = p2 = p∗, where p∗ is again given by Equation

(5.4). In other words, the closed form of equilibrium is intact when γ becomes negative. Moreover, it is

the unique equilibrium if e ≥ − 1
2 , following an analysis similar to the proof of Corollary 5.1.

Corollary 5.4 In equilibrium, for complementary products, we have:

(i) (Behind Aversion) The price p∗ is decreasing in ` if market variability is above a threshold, and

is increasing in ` otherwise. The expected profit π(p∗, p∗) is quasi-concave in ` (with a changeover

point that possibly equals −∞ or ∞);

(ii) (Ahead Seeking) The price p∗ is increasing in e. The expected profit π(p∗, p∗) is quasi-concave

in e (with a changeover point that possibly equals −∞ or ∞).

Again, we interpret the results in Corollary 5.4 from the perspectives of the expected-comparison

effect and the variable-inequality effect. We rewrite the expected social utility (5.7) in an equivalent
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form:

E[Si(p1, p2, ε)] = l [πi(p1, p2)− π−i(p1, p2)]︸ ︷︷ ︸
expected-comparison effect: ↑

−(`− e)
¶
E [Πi(p1, p2, εi)−Π−i(p1, p2, ε−i)]

+
©

︸ ︷︷ ︸
variable-inequality effect: ↑ or ↓

.

The expected-comparison effect captures the externality of social comparisons imposed on the com-

petitive price problem on expectation, independently from the distribution of demand uncertainty. This

effect influences equilibrium prices for complementary products in the opposite direction from the case

of substitutable products.

Lemma 5.5 below shows that the equilibrium prices increase when the agents’ behind aversion or

ahead seeking becomes more prominent under deterministic demand.

Lemma 5.5 If ε1 = ε2 = 0, in equilibrium, for complementary products the price p∗ increases in ` and

e.

Proof of Lemma 5.5. As in Lemma 5.3, we can show that any p∗ ∈
î

a(1+`)
2(1+`)−γ ,

a(1+e)
2(1+e)−γ

ó
is an equi-

librium. Given that γ < 0, the upper limit is increasing in ` and the lower limit is in increasing in e.

Therefore, the equilibrium price is increasing in ` and in e, in the sense that the likelihood of having a

larger p∗ is increased as ` and e becomes larger. �

By raising the price of a complementary product in a deterministic environment, an agent can

undercut the competitor’s demand and profit to reduce her feeling of loss at being outperformed by the

competitor or to increase her feeling of gain by beating the competitor. However, increased equilibrium

prices do not necessarily lead to a higher profit for complementary products. In fact, the equilibrium

profit still decreases due to behind aversion and ahead seeking behavior, and it may increase only if the

agents exhibit distributively fair behavior (e < 0). In a deterministic world, the expected-comparison

effect pushes the equilibrium prices in the opposite directions for substitutable and complementary

products, but the profit implication is consistent for e, ` ≥ 0: the agents’ profit is hurt because of social

comparisons.

By applying e = `, Lemma 5.5 implies that the expected-comparison effect pushes up the equilibrium

prices for complementary products. In the environment with random demand, the agents are affected

not only by the expected-comparison effect but also by the variable-inequality effect. The variable-

inequality effect works exactly as before. When ahead seeking is more prominent, the agents put more

weight on those promising demand scenarios, and that raises the ex ante prices. When behind aversion is

more prominent, the agents put more weight on those depressing demand scenarios, and that suppresses

the ex ante prices. As the market variability increases, both incentives become stronger. When the

expected-comparison and variable-inequality effects are combined, it can be seen that, ceteris paribus,

as ahead seeking becomes more prominent, both effects push up equilibrium prices. Ceteris paribus,

as behind aversion becomes more prominent, the expected-comparison effect pushes up the equilibrium

prices and the variable-inequality effect pushes down the equilibrium prices. When market variability
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is large enough, the variable-inequality effect is dominant; ceteris paribus, as a combined result, the

equilibrium prices fall when the agents exhibit stronger behind aversion.

We now examine the influence of the market variability on the agents that sell complementary

products, finding implications for the agents’ profitability that are different from the case of substitutable

products.

Proposition 5.5 In equilibrium, for complementary products, we have:

(i) The price p∗ is decreasing in the market variability;

(ii) The expected profit π(p∗, p∗) is increasing in the market variability when it is below a threshold, and

is decreasing when it is above this threshold;

(iii) The expected utility u(p∗, p∗) is decreasing in the market variability as long as it remains nonneg-

ative.

Proof of Proposition 5.5. (i) and (iii) can be proved in the same way we prove Proposition 5.3. It

remains to prove (ii).

It is easy to see that p∗ ≥ p̃ ≡ m
2(1−γ) if and only if σ ≥ γ(1−r)m

2(`−e)(1−γ)r . Then, π(p∗, p∗) is decreasing in

p∗, thus it is increasing in the variability of ε if σ ≥ γ(1−r)m
2(`−e)(1−γ)r , and is decreasing in the variability of

ε if σ < γ(1−r)m
2(`−e)(1−γ)r . �

The market variability has an influence only on the variable-inequality effect. As market variability

increases, in the variable-inequality effect ahead seeking pushes equilibrium prices up and behind aversion

pushes equilibrium prices down. Under the assumption that the behind aversion parameter dominates the

ahead-seeking parameter, as a combined result, the equilibrium price decreases in the market variability.

However, when the market variability is below a certain threshold, the equilibrium price p∗ in the presence

of social comparisons exceeds the “socially optimal” price p̃, which is the price that a centralized profit-

maximizing planner would optimally set for both agents. This is because social comparison have a

tendency to push up prices for complementary products (see Lemma 5.5 for the extreme case when there

is no market variability). Thus, surprisingly, for market variabilities that are low enough, in the presence

of social comparisons the expected profit π(p∗, p∗) is improved, as a result of reduced equilibrium prices

but still above p̃, when the market variability increases. As in the case of substitutable products, larger

market variability always leads to lower expected utility for the agents.

5.5.3 General Demand Curves

Finally, we extend our base model to account for non-linear demand functions. We make the following

assumption on the general demand curves to guarantee the equilibrium existence.

Assumption 5.2 (General Demand Function). The demand function di(p1, p2) is twice differen-
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tiable, and

2
∂di(p1, p2)

∂pi
+ pi

∂2di(p1, p2)

∂p2
i

≤ 0,

2
∂di(p1, p2)

∂pi
+ pi

∂2di(p1, p2)

∂p2
i

− p−i
∂2d−i(p1, p2)

∂p2
i

≤ 0,

for all p1, p2 ∈ [0, pmax], i = 1, 2.

Assumption 5.2 consists of the second-order conditions that ensure the concavity of both Πi(p1, p2, εi)

and Πi(p1, p2, εi)−Π−i(p1, p2, ε−i) with respect to pi, which further implies the concavity of EUi(p1, p2, ε)

with respect to pi. Thus a pure Nash equilibrium exists under Assumption 5.2. The assumption will

hold if either one of the following more intuitive conditions is true:

(i) The expected profit πi(p1, p2) = pidi(p1, p2) is concave in pi and d−i(p1, p2) is convex in pi.

(ii) The second-order effects ∂2di(p1, p2)/∂p2
i and ∂2d−i(p1, p2)/∂p2

i is much less significant compared

with the first-order effect ∂di(p1, p2)/∂pi over all p1, p2 ∈ [0, pmax].

The following proposition confirms the robustness of the key result in the base model, Proposition

5.1, for general demand functions.

Corollary 5.5 Suppose Assumption 5.2 holds. In addition, suppose that di(p, p) + p∂di(p, p)/∂pi,

di(p, p) + p∂di(p, p)/∂pi − p∂d−i(p, p)/∂pi and di(p, p) + p∂di(p, p)/∂pi + p∂d−i(p, p)/∂pi are decreasing

in p. Then, the following results hold in equilibrium:

(i) The price p∗ and either agent’s profit πi(p
∗, p∗) are decreasing in the behind-averse parameter `;

(ii) The price p∗ and either agent’s profit πi(p
∗, p∗) are increasing in the ahead-seeking parameter

e when the market variability is above a threshold (i.e., σ < σ̂ for some σ̂); otherwise, p∗ and

πi(p
∗, p∗) are decreasing in e.

Corollary 5.5 confirms that the main findings with linear demand function still hold when demand is

in a more general non-linear form. That is, consistent with traditional wisdom, the more behind-averse

agents are, the more intense price competition will be. However, when market variability is large enough,

the more ahead-seeking agents are, the less intense price competition will be.

5.6 Discussions and Conclusion

In this chapter, we examine how how social comparisons and demand uncertainty interact to influence

competing agents’ pricing strategies, and find that the two types of social comparisons, upward com-

parison (behind aversion) and downward comparison (ahead seeking) may have different effects on price

competition as demand uncertainty changes. Consistent with the literature, upward comparison induces

more intense price competition. However, different from the traditional wisdom, our research suggests
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that downward comparison can lead to less competition when the market variability is large enough. We

identify the expected-comparison effect and the variable-inequality effect to explain the phenomenon.

Although such finding is robust across several extensions such as with multiplicative demand shock or

general demand function, some other factors may have certain influence on price competition as well,

about which we provided brief discussions below.

Distributive Fairness. Unless otherwise specified with additional conditions, our results hold for

the distributively fair behavior, namely, for the case e < 0, as long as |e| ≤ `. In particular, those

comparative statics hold with respect to the parameter e < 0. When e < 0, an increase in the parameter

e means less prominent distributively fair behavior. This can be equivalently interpreted as more ahead

seeking relative to a very prominent distributively fair benchmark.

Demand Correlation. In the base model, we assume that the demand shocks experienced by both

agents are independently distributed. Suppose demand shocks are negatively correlated. When one

agent experiences a large market realization, its competitor is more likely to experience a small market

realization. The ahead seeking by the agent with a large market realization now gives it a stronger

incentive to raise its price, as compared to independently distributed demand shocks. Similarly, the

behind aversion of an agent with a small market realization now has a stronger incentive to lower its

price. In other words, social comparison behavior exerts a stronger externality in the variable-inequality

effect if market shocks are negatively correlated; the qualitative implications of social comparisons are

expected to remain but to a larger magnitude. Analogously, social comparison behavior may exert a

weaker externality in the variable-inequality effect if market shocks are positively correlated.7

Asymmetric Market. As mentioned, both downward and upward social comparison behavior

push down the prices in a deterministic environment with asymmetric markets. As a result, in the

expected-comparison effect, social comparisons push down the prices. In the variable-inequality effect,

the qualitative implications of social comparisons still hold for asymmetric markets. However, there are

two notable differences. First, behind aversion becomes less relevant to the larger agent, while status

seeking becomes less relevant to the smaller agent. Second, social comparisons have an effect, to a

smaller extent on the stochastically larger agent, and to a larger extent, on the stochastically smaller

agent, than in the symmetric variability case. In other words, to Goliath, David is insignificant, but for

David, Goliath can be the stimulus of extra efforts.

Social Joy. Throughout the chapter, we assume that the behind-averse parameter dominates the

ahead-seeking parameter (i.e., ` ≥ e), as stipulated in the prospect theory. This situation is termed social

regret in Avcı et al. (2014). To some extent, our results may be extended to the other social joy case

where the ahead-seeking parameter dominates the behind aversion par1ameter (i.e., e ≥ `). The closed

7In the extreme that demand shocks are perfectly positively correlated, in equilibrium, there is no profit gap between
the two agents, so this case reduces to the deterministic case. In the other extreme that demand shocks are perfectly
negatively correlated, the agents’ behaviors are qualitatively analogous to the case with independent demand shocks, but
with a larger magnitude. Again, by comparing the two extreme cases, it is again confirmed that positive correlation of
demand shocks alleviates the variable inequality effect, and negative correlation of demand shocks exacerbates the variable
inequality effect.
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form expression (5.4), as a solution to the first order conditions of utility functions, may be sustained

under additional (and more complex) conditions which guarantee that the utility functions are quasi-

concave even for the social joy case. Our results would still hold whenever this form of equilibrium is

sustained. In general, the social joy case usually has multiple and asymmetric equilibria (Avcı et al. 2014),

which requires a separately rigorous treatment. Our perspective on the variable-inequality effect tends

to predict that for the social joy case, when demand variability increases, the effect of a price increase

due to ahead seeking would dominate the effect of a price decrease due to behind aversion, leading to

less competitive behavior. One implication is that, induced by executive compensation schemes, ahead

seeking can be more significant than behind aversion, e.g., when beating competitors is rewarded but

being beaten by competitors is not punished. Therefore it may be expected that, even with the co-

existence of behind aversion and ahead seeking, social comparison with social joy can result in an overall

less intensified price competition, which benefits the agents but hurts consumers.

Other Applications. Price competition among substitutable products is a supermodular game

where price decisions are strategic complements. On the other hand, price competition among comple-

mentary products is a submodular game where price decisions are strategic substitutes. The managerial

insights we have obtained on price competition with social comparisons for substitutable or comple-

mentary products also shed light on other games of strategic complements or substitutes if they are

played in the presence of social comparison and uncertainty. First, our insights are readily applicable

to other games in which the profit functions are quadratic in the decision variables; e.g., see Vilcassim

et al. (1999) for an advertising competition game where the profit functions are quadratic in advertis-

ing decisions and see Jackson and Zeno (2014) (Section 4.4) for quadratic network games. Second, the

expected-comparison effect and the variable-inequality effect should be useful in predicting the com-

petitive behavior in other games under social comparison and uncertainty. The ahead seeking would

lead to more weight in the more favorable scenarios in one’s mental accounting, and the behind-averse

behavior would lead to more weight in the more disadvantageous scenarios, resulting in possibly different

reactions. Those reactions by one decision maker may provide an incentive for the competitors to go in

the same direction in supermodular games and in the opposite direction for submodular games.

Concluding Remarks. Our results demonstrate how social incentives and demand uncertainty

interact to influence agents’ competitive behavior in setting prices. In contrast to the deterministic

demand case, opposite-directional comparison can have a different effect when there is demand uncer-

tainty. Our model is parsimonious; yet it captures the first-order effects. The analysis is made for fairly

generally distributed demand shocks. The effects we found can shed light on other strategic interactions

in the presence of social incentives and decision making under uncertainty.
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5.7 Appendix

Proof of Corollary 5.1. (i) To prove the result, we first show that p̄ > 0 and that ∂ui(p̄,p̄)
∂pi

= 0.

By defining r ≡ 1
2+`+e , we can rewrite p̄ as p̄ = m+2(`−e)rσ

2(1−γr) . When e ≥ −1, we have 2(` − e)rσ =

2(`−e)
2+`+eσ ≥ 2σ ≥ − ᾱ2 ≥ −

m
2 . Here, the second inequality holds because σ reaches its minimum − ᾱ4 when

ε follows the two-point distribution with Pr(ε = −ᾱ) = Pr(ε = ᾱ) = 1
2 (See the discussions after Lemma

5.2). The last one holds because ᾱ ≤ m by assumption. Thus, p̄ > 0.

Let us solve ∂u1(p,p)
∂p1

= 0. From (5.2), we can calculate the derivative ∂u1(p1,p2)
∂p1

= ∂EU1(p1,p2)
∂p1

.

∂u1(p1, p2)

∂p1
=γp2 + (1 + e)(m− 2p1) + (`− e)E

[
(m− 2p1 + ε1)1{p1(m−p1+γp2+ε1)<p2(m−p2+γp1+ε2)}

]
.

(5.10)

By setting p1 = p2 = p in the above equation, we have

∂u1(p, p)

∂p1
=

(2 + `+ e)m+ 2(`− e)σ
2

− (2 + `+ e− γ)p,

if p > 0. Then, we can obtain the expression of p̄ in (5.4) by solving ∂u1(p̄,p̄)
∂p1

= 0. Symmetrically,

∂u2(p̄,p̄)
∂p2

= 0.

If p̄ ∈ (0, pmax], then it is easy to see from the concavity of ui(p1, p2) that p1 = p̄ is the solution

to maxp1∈[0,pmax] u1(p1, p̄) and p2 = p̄ solves maxp1∈[0,pmax] u2(p̄, p2). If p̄ > pmax, then it follows from

∂ui(p̄,p̄)
∂pi

= 0 that ∂ui(p
max,pmax)
∂pi

≥ 0 (from (5.10), we can verify that ∂ui(p,p)
∂pi

is decreasing in p), which

again implies that pi = pmax is the best response of agent i to the other agent’s price p−i = pmax.

Therefore, p1 = p2 = p∗ is an equilibrium.

(ii) We prove the uniqueness of the equilibrium by contradiction. Suppose that there is an equilibrium

in which 0 ≤ p2 < p1.

Let us consider the function H(p1, p2) ≡ ∂u1(p1,p2)
∂p1

. From (5.10), we can write H(p1, p2) as

H(p1, p2) =γp2 + (1 + e)(m− 2p1) + (`− e)Eε1
ï
(m− 2p1 + ε1)F̄ε2

Å
p1(m− p1 + ε1)− p2(m− p2)

p2

ãò
,

where F̄ε2(x) = Pr(ε2 > x). If we denote g(p1, p2, ε1) = (m− 2p1 + ε1)F̄ε2
Ä
p1(m−p1+ε1)−p2(m−p2)

p2

ä
, then

H(p1, p2) = γp2 + (1 + e)(m− 2p1) + (`− e)Eε1g(p1, p2, ε1).

Since ε1 and ε2 follow i.i.d. distributions, we have

∂u2(p1, p2)

∂p2
=γp1 + (1 + e)(m− 2p2) + (`− e)Eε2

ï
(m− 2p2 + ε2)F̄ε1

Å
p2(m− p2 + ε2)− p1(m− p1)

p1

ãò
=γp1 + (1 + e)(m− 2p2) + (`− e)Eε1

ï
(m− 2p2 + ε1)F̄ε2

Å
p2(m− p2 + ε1)− p1(m− p1)

p1

ãò
=H(p2, p1).
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Let us investigate the following difference.

p1(m− p1 + ε1)− p2(m− p2)

p2
− p2(m− p2 + ε1)− p1(m− p1)

p1
=

(m− p1 − p2 + ε1)(p2
1 − p2

2)

p1p2
. (5.11)

We see that F̄ε2
Ä
p1(m−p1+ε1)−p2(m−p2)

p2

ä
≥ F̄ε2

Ä
p2(m−p2+ε2)−p1(m−p1)

p1

ä
if ε1 ≤ p1 + p2 − m, and that

F̄ε2
Ä
p1(m−p1+ε1)−p2(m−p2)

p2

ä
≤ F̄ε2

Ä
p2(m−p2+ε2)−p1(m−p1)

p1

ä
if ε1 ≥ p1 + p2 −m.

Next, we compare g(p1, p2, ε1) and g(p2, p1, ε2) by three cases.

Case 1: ε1 ≤ p1 + p2 −m.

In this case, we have m−2p1 + ε1 < m−p1−p2 + ε1 ≤ 0. If m−2p2 + ε1 ≥ 0, then g(p1, p2, ε1) ≤ 0 ≤

g(p2, p1, ε1). Otherwise, m−2p1+ε1 < m−2p2+ε1 < 0. Together with the result F̄ε2
Ä
p1(m−p1+ε1)−p2(m−p2)

p2

ä
≥

F̄ε2
Ä
p2(m−p2+ε2)−p1(m−p1)

p1

ä
≥ 0, again we have g(p1, p2, ε1) ≤ g(p2, p1, ε1).

Case 2: p1 + p2 −m < ε1 ≤ 2p1 −m.

In this case, we have m− 2p2 + ε1 > m− p1− p2 + ε1 > 0 and m− 2p1 + ε1 ≤ 0. Then, g(p1, p2, ε1) ≤

0 ≤ g(p2, p1, ε1).

Case 3: ε1 > 2p1 −m.

In this case, we have m−2p2+ε1 > m−2p1+ε1 > 0 and ε1 > p1+p2−m. The latter inequality implies

F̄ε2
Ä
p1(m−p1+ε1)−p2(m−p2)

p2

ä
≤ F̄ε2

Ä
p2(m−p2+ε2)−p1(m−p1)

p1

ä
. It follows that g(p1, p2, ε1) ≤ g(p2, p1, ε1).

Combining the above three cases, we can conclude that Eε1g(p1, p2, ε1) ≤ Eε1g(p2, p1, ε1). Then,

H(p1, p2)−H(p2, p1) =− [γ + 2(1 + e)](p1 − p2) + (`− e) [Eε1g(p1, p2, ε1)− Eε1g(p2, p1, ε1)] < 0.

(5.12)

It is easy to verify that ∂u2(p1,0)
∂p2

> 0, implying that the expected utility can be improved if p2 is

increased by a small amount. Thus, p2 > 0.

If p1 < pmax, then ∂ui(p1,p2)
∂pi

= 0 for i = 1, 2, or equivalently, H(p1, p2) = H(p2, p1) = 0, which

contradicts (5.12).

If p1 = pmax, then H(p1, p2) = ∂u1(p1,p2)
∂p1

≥ 0. Consequently, we have ∂u2(p1,p2)
∂p2

= H(p2, p1) >

H(p1, p2) ≥ 0. Then, agent 2’s expected utility u2(p1, p2) can be improved if p2 is slightly increased

(note that p2 < p1 = pmax), contradicting the optimality of p2 for the given p1.

Therefore, we proved that the prices with p2 < p1 cannot be an equilibrium. Symmetrically, we can

show that the prices p1 and p2 with p1 < p2 do not constitute an equilibrium. �

Proof of Corollary 5.4. (i) Price. We can calculate that

dp̄

d`
=

2(2 + 2e− γ)σ − γm
2(2 + `+ e− γ)2

.

Note that γ < 0. Then, dp̄
d` ≥ 0 if σ ≥ γm

2(2+2e−γ) and dp̄
d` ≤ 0 otherwise. As a result, p̄ (thus also p∗) is

increasing in ` if the market variability is below the threshold at which σ = σ̂1(e) ≡ γm
2(2+2e−γ) and is
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decreasing in ` otherwise.

Profit. Note that π(p, p) is concave in p and reaches its maximum at p̃ = m
2(1−γ) . A simple

calculation reveals that p̄ > p̃ if and only if σ > σ̂2(`, e) ≡ γ(1+`+e)
2(1−γ)(`−e)m. This implies that π(p̄, p̄) is

decreasing in p̄ if if σ > σ̌(`, e) and is increasing in p̄ otherwise.

To proceed further, we compare the two thresholds σ̂1(e) and σ̂2(`, e).

σ̂2(`, e)− σ̂1(e) =
γ(1 + `+ e)m

2(1− γ)(`− e)
− γm

2(2 + 2e− γ)
=

γm(1 + 2e)(`+ e+ 2− γ)

2(1− γ)(`− e)(2 + 2e− γ)
,

from which we see that σ̂1(e) ≤ σ̂2(`, e) if and only if e ≤ − 1
2 .

First, let us consider the case where e < − 1
2 . It is easy to see that σ̂2(`, e) is decreasing in ` in this

case. For a given σ, let L(σ, e) be a threshold value of ` such that σ < σ̂2(`, e) for ` < L(σ, e) and

σ ≥ σ̂2(`, e) otherwise. More specifically, we can show that

L(σ, e) =


−∞ if σ ≥ σ̂2(0, e),

γ(1+2e)m
2(1−γ)σ−γm + e if σ̂2(∞, e) ≤ σ < σ̂2(0, e),

∞ if σ < σ̂2(∞, e).

Suppose that σ > σ̂1(e). If ` < L(σ, e), then σ̂1(e) ≤ σ < σ̂2(`, e). Consequently, p̄ is increasing in `

and p̄ < p̃. Thus, π(p̄, p̄), as well as π(p∗, p∗), is increasing in `. If ` ≥ L(σ, e), then σ̂1(e) ≤ σ̂2(`, e) ≤ σ.

In this case, p̄ is still increasing in ` but p̄ ≥ p̃, implying that π(p∗, p∗) is decreasing in `.

If σ ≤ σ̂1(e), we have σ ≤ σ̂1(e) ≤ σ̂2(`, e). In this case, p̄ is decreasing in ` and p̄ ≤ p̃. Therefore,

π(p∗, p∗) is decreasing in `.

Thus, we have proved that π(p∗, p∗) is quasi-concave in ` if e < − 1
2 .

Similarly, we can show that π(p∗, p∗) is quasi-concave in ` if e ≥ − 1
2 , with the following changeover

point:

L̃(σ, e) =


−∞ if σ < σ̂2(e+, e) or σ > σ̂1(e),

γ(1+2e)m
2(1−γ)σ−γm + e if σ̂2(e+, e) ≤ σ ≤ σ̂2(∞, e),

∞ if σ̂2(∞, e) < σ ≤ σ̂1(e),

where e+ = max {0, e}.

(ii) Price. Let us calculate the derivative of p̄ with respect to e.

dp̄

de
= −2(2 + 2`− γ)σ + γm

2(2 + `+ e− γ)2
,

from which we see that p̄, thus also p∗, increases in e.

Profit. As shown in (i), we have p̄ < p̃ if and only if σ < σ̂2(`, e) ≡ γ(1+`+e)
2(1−γ)(`−e) .
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It is easy to see that σ̂2(`, e) is decreasing in e. Then, there exists ε(σ, `) (possibly equal to ∞ or

−∞), such that σ < σ̂(`, e) if e < ε(σ, `) and σ ≥ σ̂(`, e) otherwise. In particular,

ε(σ, `) =


∞ if σ < σ̂2(`, `),

`− γm(1+2`)
2(1−γ)σ+γm if σ̂2(`, `) ≤ σ < σ̂2(`,−min {`, 1}),

−∞ if σ ≥ σ̂2(`,−min {`, 1}).

It then follows that π(p∗, p∗) is quasi-concave with ε(σ, `) being the changeover point. �

Proof of Corollary 5.5. (i) Price. Let us start with calculating the derivative ∂EUi(p1, p2, ε)/∂pi.

∂EUi(p1, p2, ε)

∂pi

=(1 + e)[di(p1, p2) + pi
∂di(p1, p2)

∂pi
]− e[p−i

∂d−i(p1, p2)

∂pi
]

+ (`− e)
ßï
di(p1, p2) + εi + pi

∂di(p1, p2)

∂pi
− p−i

∂d−i(p1, p2)

∂pi

ò
I{pi[di(p1,p2)+εi]<p−i[d−i(p1,p2)+ε−i]}

™
.

If we set p1 = p2 = p, then

∂EUi(p, p, ε)

∂pi
=(1 + e)di(p, p) + (1 + e)p

∂di(p, p)

∂pi
− ep∂d−i(p, p)

∂pi

+ (`− e)
ß

[di(p, p) + p
∂di(p, p)

∂pi
− p∂di(p, p)

∂p−i
+ εi]I{εi<ε−i}

™
=di(p, p) + p

∂di(p, p)

∂pi
+
`+ e

2
[di(p, p) + p

∂di(p, p)

∂pi
− p∂d−i(p, p)

∂pi
] + (`− e)E[εiI{εi<ε−i}].

For ease of notation, we write g(p) = di(p, p) + p∂di(p, p)/∂pi and h(p) = di(p, p) + p∂di(p, p)/∂pi −

p∂d−i(p, p)/∂pi. By assumption, both g(p) and h(p) are decreasing in p, thus so is ∂EUi(p, p, ε)/∂pi =

g(p) + (`+ e)h(p)/2 + (`− e)σ. We can rewrite ∂EUi(p, p, ε)/∂pi as:

∂EUi(p, p, ε)

∂pi
=g(p) + e · h(p) + (`− e)[1

2
h(p) + σ].

The symmetric equilibrium p∗(`, e, σ), as a function of (`, e, σ), is determined by

p∗(`, e, σ) = inf

ß
p ∈ [0, pmax] | g(p) + e · h(p) + (`− e)[1

2
h(p) + σ] ≤ 0

™
. (5.13)

In other words, p∗(`, e, σ) is the smallest p ∈ [0, pmax] such that either g(p) + e · h(p) + (`− e)[ 1
2h(p) + σ]

hits 0 for the first time, or g(pmax) + e · h(pmax) + (`− e)[ 1
2h(pmax) + σ] > 0 and p∗ = pmax. It is easy to

see that p∗(`, e, σ) is increasing in σ. In fact, for σ′ > σ, we have g(p∗(`, e, σ)) + e · h(p∗(`, e, σ)) + (`−

e)[ 1
2h(p∗(`, e, σ)) + σ′] ≥ g(p∗(`, e, σ)) + e · h(p∗(`, e, σ)) + (` − e)[ 1

2h(p∗(`, e, σ)) + σ] ≥ 0. This implies

that p∗(`, e, σ′) ≥ p∗(`, e, σ).
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As σ increases, p∗(`, e, σ) increases, causing both g(p∗) and h(p∗) to decrease. Before p∗(`, e, σ)

reaches pmax, g(p∗) + e · h(p∗) + (` − e)[ 1
2h(p∗) + σ] = 0. An increasing p∗ with respect to σ implies

a decreasing g(p∗) + e · h(p∗). Then, 1
2h(p∗) + σ = −[g(p∗) + e · h(p∗)]/(` − e) is increasing in σ. If

p∗ reaches pmax, it will remain pmax thereafter, in which case 1
2h(p∗) + σ = 1

2h(pmax) + σ continues to

increase in σ.

Thus 1
2h(p∗)+σ is increasing in σ. Upon reaching pmax, p∗ remains constant, in which case 1

2h(p∗)+σ

still increases in σ.

Next, we argue that 1
2h(p∗) +σ ≤ 0. To this end, let us suppose to the contrary that 1

2h(p∗) +σ > 0.

Since σ ≤ 0 and ∂d−i(p, p)/∂pi ≥ 0, g(p∗) = h(p∗) + p∂d−i(p
∗, p∗)/∂pi ≥ h(p∗) ≥ h(p∗) + 2σ > 0. As a

result, g(p∗) + e · h(p∗) + (`− e)[ 1
2h(p∗) + σ] > 0, contradicting (5.13).

It then follows the nonpositiveness of 1
2h(p∗) + σ that for `′ > `,

g(p∗(`, e, σ)) + e · h(p∗(`, e, σ)) + (`′ − e)[1
2
h(p∗(`, e, σ)) + σ]

≤g(p∗(`, e, σ)) + e · h(p∗(`, e, σ)) + (`− e)[1
2
h(p∗(`, e, σ)) + σ] = 0,

if p∗(`, e, σ) < pmax. Thus, p(`′, e, σ) ≤ p∗(`, e, σ). If p∗(`, e, σ) = pmax, then p(`′, e, σ) ≤ p∗(`, e, σ) holds

trivially.

Profit. Under the symmetric equilibrium, agent i’s expected profit is πi(p
∗, p∗) = p∗di(p

∗, p∗). Let

p̂ maximizes π(p, p) with respect to p ∈ [0,∞). Then πi(p, p) increases in p if p ≤ p̂ and decreases in

p if p > p̂. The first-order condition requires that di(p̂, p̂) + p̂(∂di(p̂, p̂)/∂pi + ∂di(p̂, p̂)/∂p−i) = 0. By

symmetry, ∂di(p̂, p̂)/∂p−i = ∂d−i(p̂, p̂)/∂pi. Thus g(p̂) = di(p̂, p̂) + p̂∂di(p̂, p̂)/∂pi = −p̂∂d−i(p̂, p̂)/∂pi
and h(p̂) = di(p̂, p̂) + p̂∂di(p̂, p̂)/∂pi − p̂∂d−i(p̂, p̂)/∂pi = −2∂d−i(p̂, p̂)/∂pi. It follows that

∂EUi(p̂, p̂)

∂pi
=− (1 + `+ e)p̂

∂d−i(p̂, p̂)

∂pi
+ (`− e)σ ≤ 0.

Consequently, p∗ ≤ p̂, which implies that the expected profit πi(p
∗, p∗) is increasing in p∗. Therefore,

πi(p
∗, p∗) is decreasing in `.

(ii) Price. We can rewrite

∂EUi(p, p, ε)

∂pi
= g(p) + `[

1

2
h(p) + σ] + e[

1

2
h(p)− σ].

The monotonicity of p∗(`, e, σ) with respect to e in a small neighborhood of Ne 3 e is determined by the

sign of 1
2h(p∗(`, e, σ)− σ. If 1

2h(p∗(`, e, σ)− σ > 0, then for e′ > e,

g(p∗(`, e, σ)) + `[
1

2
h(p∗(`, e, σ)) + σ] + e′[

1

2
h(p∗(`, e, σ))− σ]

>g(p∗(`, e, σ)) + `[
1

2
h(p∗(`, e, σ)) + σ] + e[

1

2
h(p∗(`, e, σ))− σ] ≥ 0,
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implying that p∗(`, e′, σ) ≥ p∗(`, e, σ). Similarly, we can show that p∗(`, e′, σ) ≤ p∗(`, e, σ) if 1
2h(p∗(`, e, σ)−

σ < 0, and p∗(`, e′, σ) = p∗(`, e, σ) if 1
2h(p∗(`, e, σ)− σ = 0.

On the other hand, since p∗(`, e, σ) is increasing in σ and h(p) is decreasing in p, the term 1
2h(p∗(`, e, σ))−

σ is decreasing in σ. Consider the case in which e = 0. Let σ̂ be the threshold such that 1
2h(p∗(`, 0, σ))−

σ > 0 for σ < σ̂ and 1
2h(p∗(`, 0, σ))− σ < 0 for σ > σ̂.

Then, if σ < σ̂, p∗(`, e, σ) will increase in e near e = 0. As p∗(`, e, σ) increases, the value of

1
2h(p∗(`, e, σ)) − σ will decrease. Before 1

2h(p∗(`, e, σ)) − σ decreases to 0, p∗(`, e, σ) increases; after

1
2h(p∗(`, e, σ))− σ hits 0 (if ever), p∗(`, e, σ) will remain a constant.

If σ > σ̂, p∗(`, e, σ) will decrease in e near e = 0. As p∗(`, e, σ) decreases, the value of 1
2h(p∗(`, e, σ))−σ

will increase. p∗(`, e, σ) will be decreasing in e before 1
2h(p∗(`, e, σ)) − σ increases to 0, and remain a

constant thereafter.

Profit. As shown in (i), the expected profit πi(p
∗, p∗) is increasing in p∗. Thus πi(p

∗, p∗) is

increasing in e if σ < σ̂, and is decreasing in e if σ > σ̂. �
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